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In this article, we show that in times series models with in-mean and level effects, persistence will be transmitted from the
conditional variance to the conditional mean and vice versa. Hence, by studying the conditional mean/variance independently,
one will obtain a biased estimate of the true degree of persistence. For the specific example of an AR(1)-APARCH(1,1)-
in-mean-level process, we derive the autocorrelation function, the impulse response function and the optimal predictor. Under
reasonable assumptions, the AR(1)-APARCH(1,1)-in-mean-level process will be observationally equivalent to an autoregres-
sive moving average (ARMA)(2,1) process with the largest autoregressive root being close to one. We illustrate the empirical
relevance of our results with applications to S&P 500 return and US inflation data.
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1. INTRODUCTION

Many economic time series are characterized by an autocorrelation structure that makes it difficult to classify the
series as being either stationary I(0) or nonstationary I(1). A primary example for such a series is inflation rates.
Conventional wisdom then suggests that we employ unit root tests in order to base the econometric analysis either
on the level of such a series or on the first difference. Clearly, the decision whether the series is treated as being
I(0) or I(1) has important implications for the subsequent modelling, hypothesis testing, forecasting and the like.
As pointed out by Haldrup and Jansson (2006), a frequent criticism of unit root tests concerns the poor power
and size properties that many such tests exhibit (e.g. DeJong et al., 1992a, 1992b). Besides the observation that
many economic time series are strongly dependent over time, there is the stylized fact that for the same series, one
typically finds generalized autoregressive conditional heteroskedasticity (GARCH) effects with highly persistent
volatility. Moreover, economic theory often suggests that the level and the second conditional moment of these
series should be interrelated. For example, Cukierman and Meltzer (1986) and Holland (1995) argue that inflation
uncertainty has either a positive or a negative effect on the level of inflation, while Friedman (1977) and Ball
(1992) rationalize an effect of the level of inflation on its second conditional moment. Against this theoretical
background, the phenomena of persistence in the level and in the conditional variance are usually analysed and
treated independently. For example, standard unit root tests are based either on the assumption that the variance of
the series is constant or on the assumption that some type of heteroscedasticity is present (e.g. Kim and Schmidt,
1993; Seo, 1999; Ling and Li, 2003; Ling et al., 2003; Rodrigues and Rubia, 2005; Kourogenis and Pittis, 2008)
but ignore the possibility that the volatility has a direct effect on the level.1

� Correspondence to: Menelaos Karanasos, Economics and Finance, Brunel University, Uxbridge, West London, UB3 3PH, UK.
E-mail: Menelaos.Karanasos@brunel.ac.uk

1 For the important research issue of testing for unit roots in the presence of permanent volatility shifts, see e.g. Cavaliere and Taylor
(2007, 2008a).
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In this article, we consider an AR-APARCH-in-mean-level (AR-APARCH-ML) process, that is, a model in
which the conditional variance affects the conditional mean and the level affects the conditional variance. This
model has been introduced by Engle et al. (1987) and applied by, for example, Grier et al. (2004), Conrad et al.
(2010), Conrad and Karanasos (2010, 2014) and Karanasos and Zeng (2013). We provide a new interpretation
of the model’s properties by arguing that it has an observationally equivalent representation as an ARMA(2,1)
process. The largest autoregressive root of the AR part will, under reasonable assumptions, be close to and sta-
tistically indistinguishable from one. This means that in empirical applications, the process will appear to be an
ARIMA(1; 1; 1). Most importantly, the largest root of the AR part is closely linked to the persistence of the condi-
tional variance of the process. We then show how the in-mean effect leads to a ‘transmission of memory’ from the
conditional variance to the conditional mean and, thereby, affects the persistence properties of the level process.
We illustrate this important point by deriving the autocorrelation function (ACF), the impulse response function
(IRF), new measures of persistence and the optimal predictor for the level process.2 We also show that procedures
that ignore the transmission mechanism and do not distinguish between the different types of persistence in the
two moments lead to biased estimates of the persistence in either the mean or the variance. In particular, using a
Monte Carlo study, we show that in the presence of an in-mean effect, conventional unit root tests tend to falsely
indicate that the underlying process is I(1). Further, we illustrate the empirical importance of our results by apply-
ing our model to S&P 500 return and US inflation data. Finally, it is important to note that our results are closely
related to Rahbek and Nielsen (2014) who show that in a multivariate model in which lagged levels enter both
the conditional mean and the conditional variance, the multivariate process can be strictly stationary and ergodic
although the individual series have unit roots.

The outline of the article is as follows. Section 2 presents the model and its properties. Section 3 provides the
empirical applications. Section 4 concludes the article. Additional material, including the optimal predictor, can
be found in the Supplementary Information.

2. THE MODEL

The AR(1)-APARCH(1,1)-in-mean-level [AR(1)-APARCH(1,1)-ML] model is given by

.1 � �L/yt D ' C #h
ı
2

t C "t (1)

with "t D eth
1
2

t , where L is the lag operator, ı > 0, ¹etº is a sequence of i.i.d. random variables with zero
mean and finite variance, E

�
e2t
�
, and ht is the conditional variance of yt (see, among others, Christensen and

Nielsen, 2007). The AR(1) parameter � naturally measures the intrinsic persistence in the level of yt . The power-

transformed conditional variance, h
ı
2

t , is positive with probability one and is a measurable function of Ft�1, which
in turn is the sigma-algebra generated by ¹yt�1; yt�2; : : :º. We assume that ht is specified as an asymmetric power
ARCH(1,1)-level [APARCH(1,1)-L] process:

.1 � ˇL/h
ı
2

t D ! C f̨ ."t�1/C �yt�1; (2)

where f ."t�1/ D Œj"t�1j � &"t�1�
ı D f .et�1/h

ı=2

t�1
with j& j < 1 (for details on the power ARCH model, see

e.g. Karanasos and Kim, 2006). By including the lagged yt in the conditional variance equation (the so-called level

effect) and h
ı
2

t in the mean equation (the so-called in-mean effect), we allow for simultaneous feedback between
the two variables. The following conditions are necessary and sufficient for ht > 0 for all t W ! > 0; ˛; ˇ; � � 0

and yt � 0 for all t .

2 For prediction in ARMA models with GARCH-M effects, see also Karanasos (2001).
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Hereafter, we will denote �r D E
�
h
ır
2

t

�
. Expressions for �1 and �2 are given in Proposition 2 and equations

(B.7/B.8) in the Supplementary Information. The APARCH(1,1)-L formulation in equation (2) can readily be
interpreted as an ARMA(1,1)-L process for the conditional variance:

.1 � cL/h
ı
2

t D ! C ˛vt�1 C �yt�1; (3)

where c D ˛�.1/ C ˇ, with �.r/ D E
®
Œf .et /�

r
¯
, and vt D f ."t / � E Œf ."t /jFt�1� D

�
f .et / � �

.1/
�
h
ı
2

t is, by

construction, an uncorrelated term with expected value 0 and E
�
v2t
�
D �2v D �2e� withe� D h

�.2/ �
�
�.1/

�2i
.

While the "t are the innovations to the level of yt , the vt can be considered as the innovations to the conditional
variance of yt .

Note that the parameter c measures the intrinsic memory or persistence in the conditional variance. The extreme
case in which c D 1 is well known as the integrated GARCH model (see Engle and Bollerslev, 1986).3

Also, notice that E
�
"2t
�
D �2" D �2=ıE

�
e2t
�

and E ."tvt / D �"v D �1C1=ı� with � D EŒetf .et /�. In other
words, the covariance matrix of the two shocks "t and vt is given by

† D

"
�2" �"v

�"v �2v

#
D

"
�2=ıE

�
e2t
�
�1C1=ı�

�1C1=ı� �2e�
#
: (4)

If et is standard normal, then E
�
e2t
�
D 1, and �.r/ and � are given by

�.r/ D
1
p
�

�
.1 � &/rı C .1C &/rı

�
2.

rı
2
�1/	

�
rı C 1

2

	
; (5)

� D
1
p
2�

�
.1 � &/ı � .1C &/ı

�
2.ı=2/	

�
ı

2
C 1

	
; (6)

where 	 .�/ is the Gamma function. Next, we investigate some special cases under the assumption that et is
standard normal. First, we are interested in the behaviour of �.1/ when ı D 2 or ı D 1. It directly follows from
equation (5) that

�.1/ D

´
1C &2 when ı D 2p
2=� when ı D 1:

That is, the persistence parameter c D ˛�.1/ C ˇ will increase in j& j for ı D 2 and will be independent of the
asymmetry term for ı D 1. Further, for & D 0, equation (6) shows that � D 0 and, hence, "t and vt will be
uncorrelated for all ı > 0. Finally, for ı D 2 and & D 0, we obtain Q� D E

�
e4t
�
�
�
E
�
e2t
��2
D 2, and† reduces to

† D



�1 0

0 2�2

�
:

3 The parameter c determines the rate of decay of the IRF of the GARCH(1,1). For c D 1, the IRF is constant (see e.g. Conrad and Karanasos,
2006).

wileyonlinelibrary.com/journal/jtsa Copyright © 2015 Wiley Publishing Ltd J. Time. Ser. Anal. 36: 706–720 (2015)
DOI: 10.1111/jtsa.12119



TRANSMISSION OF MEMORY IN GARCH-M MODEL 709

On the other hand, for ı D 1, equations (5) and (6) reduce to �.2/ D 1C &2 and N� D �& , which implies that †
becomes

† D �2

"
1 �&

�& 1C &2 � 2=�

#
: (7)

Figure 1 shows the covariance between "t and vt for & varying between �0:5 and 0.5 and ı 2 ¹1; 1:5; 2º.
The other parameters are fixed as described in the caption of Figure 1. The figure shows that "t and vt are neg-
atively (positively) correlated for positive (negative) values of & . For example, in empirical applications using
stock return data, we would expect a positive & due to the leverage effect and, hence, negative return innovations
to coincide with positive volatility innovations. On the contrary, if we think about applications to inflation data,
we would expect a negative & because higher than expected inflation rates are typically associated with positive
volatility innovations.

Next, we derive the ‘univariate representations’ of yt and hı=2t . That is, we write yt as an ARMA process that
no longer depends on hı=2t . Similarly, we obtain an ARMA representation for hı=2t that does not involve yt�1.

Proposition 1. The univariate ARMA representations of yt and h
ı
2

t are given by

�
1 � a1L � a2L

2
�
yt D '

� C .1 � cL/"t C #˛vt�1; (8)

�
1 � a1L � a2L

2
�
h
ı
2

t D !
� C �"t�1 C .1 � �L/˛vt�1; (9)

where a1 D � C c C #�; a2 D ��c, '� D '.1 � c/C #! and !� D !.1 � �/C '� .
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Figure 1. �"v as a function of & . The other parameters are given by ' D 0:05, � D 0:4, # D 0:5, ! D 0:1, ˛ D 0:1, ˇ D 0:7,
� D 0:0 and ı 2 ¹1; 1:5; 2º
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As Proposition 1 shows, the model given by equations (1) and (2) has a univariate ARMA(2,1) representation in
the level and an ARMA(2,2) representation in the conditional variance. Because of the existence of simultaneous
feedback, that is, in-mean as well as level effects, both the level and the conditional variance depend on the two
shocks "t and vt . Further, note that yt and hı=2t have the same autoregressive polynomial.

Assumption A1 (Stationarity). The inverse roots 
1 and 
2 of
�
1 � a1L � a2L

2
�

lie inside the unit circle.
Moreover, without loss of generality, we assume that 
1 ¤ 
2.

Assumption (A1) implies that the ARMA(2,1) process given by equation (8) is covariance stationary. It also
implies that a1 C a2 < 1. The representation in equations (8) and (9) illustrates that measures of persistence in
the level/conditional variance that are based on a1 and a2 will confuse intrinsic persistence with persistence that
is due to the in-mean/level transmission channel.4

Proposition 2. When Assumption (A1) holds, the unconditional expectation of h
ı
2

t exists if !� > 0 and is
given by

�1 D
!�

1 � a1 � a2
: (10)

Clearly, for ı D 2 and � D & D 0, the result in Proposition 2 reduces to the well-known formula for the
GARCH(1,1) process: �1 D E.ht / D E

�
"2t
�
D !=.1� ˛ � ˇ/. Further, note that the existence of �1 guarantees

that of �2=ı only if ı � 2. Similarly, the existence of the second moment �2 guarantees that of �1C1=ı only
if ı � 1.

Next, we discuss the moving average part of equation (8), which is a function of the mean shocks "t and the
conditional variance shocks vt . As discussed earlier, the two shocks will be uncorrelated if & D 0. Since the sum
of an MA(1) and a white noise process is again an MA(1), equation (8) can be rewritten as

�
1 � a1L � a2L

2
�
yt D '

� C .1 � �L/�t ; (11)

where �t is an uncorrelated error process with mean zero and variance �2� . The parameters � and �2� can be
expressed as

� D
��0 ˙

q
�2
0
� 4�2

1

2�1
and �2� D

�1

��
;

where �0 D .1C c2/�2" C .#˛/
2�2v � 2c#˛�"v and �1 D �c�2" C #˛�"v . Note that (i) � is real if and only if

�2
0
> 4�2

1
and (ii) 0 7 � if �1 7 0, that is, if #˛�"v 7 c�2" . Equation (11) is interesting because in Section 3,

it will allow us to discuss under which parameter constellations our model is able to reproduce the typical time
series properties of stock returns and inflation.

2.1. Covariance Structure

Equations (8) and (11) suggest that the ACF of yt can be very persistent although the intrinsic persistence in the
level, that is, �, may be low. Intuitively, this will be the case if there is high persistence in the conditional variance
and a sufficiently strong in-mean effect. In this subsection, we formally derive the autocovariance structure of yt ,

4 Such a measure could be the largest autoregressive root or the sum of the autoregressive coefficients. See Section 2.3.
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Covk.yt /, k 2 N, in the presence of the in-mean term # ¤ 0.5 Special attention will be given to the role played
by the power transformation, ı. Lemma 1 provides the (co)variance structure of yt for the case that � D 0. The
general result including the level effect can be found in Proposition 5 in the Supplementary Information.

Lemma 1. Let � D 0. Then, 
1 D �, 
2 D c and

V .yt / D
1

1 � �2

²
�2" C

#˛

1 � �c



�2v#˛.1C �c/

1 � c2
C 2�"v�

�³
; (12)

Covk.yt / D
�k

1 � �2
�2" C #

2˛2�2v

.k/ C #˛�"v�

.k/ for k � 1; (13)

where 
.k/ and �.k/ are given by


.k/ D
1

.1 � �c/.� � c/



�1Ck

1 � �2
�
c1Ck

1 � c2

�

�.k/ D
1

.� � c/.1 � �c/

"
�k
�
1C �2 � 2�c

�
1 � �2

� ck

#
:

Lemma 1 shows that the variance as well as the covariances of yt will be equal to the ones of an AR(1) if there
is no in-mean effect. For # ¤ 0, both are different from the corresponding expressions for an AR(1) because
memory is transmitted from the conditional variance to the level of the series. In particular, it is interesting to
discuss the properties of the covariance function. Equation (13) shows that Covk.yt / is a sum of three terms. The
first term is simply the covariance function of an AR(1). The second term is due to the fact that # ¤ 0 and hı=2t
itself is correlated. If � D 0, then 
.k/ D ck=.1 � c2/, and the second term is equal to Covk

�
hı=2t

�
scaled by

the squared in-mean term.6 Although yt has no intrinsic persistence in this case, it will be correlated because of
the transmission of memory from the conditional variance due to the in-mean effect. Finally, even in the presence
of an in-mean effect, the third term will be nonzero only if "t and vt are correlated, that is, & ¤ 0.7

In the following, we will graphically illustrate the consequences of the in-mean term for the dependence struc-
ture of yt . For simplicity, in addition to � D 0, we also assume that & D 0. As equation (13) shows, in this case,
Covk.yt / > �2" �

k=.1��2/, that is, greater than the autocovariance of the pure AR(1), whenever # ¤ 0. Further,
Covk.yt / is increasing in j#j, that is, in the strength of the in-mean effect. Figure 2 shows the ACFs of yt for
� D 0:1, that is, a low degree of intrinsic level persistence, and # increasing from 0.0 to 2.0 in steps of 0.5 with
˛ D 0:1 (upper panel), ˛ D 0:15 (middle panel) and ˛ D 0:19 (lower panel) while ˇ D 0:8. The power term ı is
assumed to be either 2 (left panel) or 1 (right panel). The lowest line (# D 0) in each panel corresponds to the ACF
of the pure AR(1) model that is given by �k . The figure clearly shows how increasing the value of # increases the
correlation of yt . When the conditional variance is almost integrated .c D ˛ C ˇ D 0:99/ and ı D 2, the ACF
of yt essentially behaves like one for a nonstationary process. Since there is almost no intrinsic persistence in the

5 The corresponding results for the correlation structure of the power-transformed conditional variance are presented in the Supplementary
Information B.3 together with the cross correlations between yt and hı=2t .
6 See the expression for Covk

�
h
ı=2
t

�
in Lemma 3 in the Supplementary Information for � D 0.

7 Interestingly, when ı D 1 and # D &.1 � c2/=
�
c˛

�
1C &2 � 2=�

��
, Covk.yt / reduces to �2.1 C #˛&=c/�k=.1 � �2/. This

result is in line with the fact that in this case, � D c and the ARMA(2,1) representation reduces to an AR(1) process (see the Supplementary
Information B.1).
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Figure 2. Autocorrelation function (ACF) of yt for � D 0:1 and # increasing from 0.0 (lowest ACF) to 2.0 (highest ACF) in
steps of 0.5. Left panel: ı D 2, right panel: ı D 1. The remaining parameters are ' D 0, ! D 0:1, ˇ D 0:8 and � D 0

level of yt , this behaviour is purely due to the transmission of memory from the conditional variance to the level.8

Thus, an applied researcher who investigates the ACF of yt might erroneously come to the conclusion that the
process is integrated of order one in the level and, hence, model the first difference of yt . In the next section, we
will show that standard unit root tests will tend to corroborate this false conclusion.

2.2. Unit Root Tests

We investigate the performance of standard unit root tests in the presence of an in-mean effect. A typical empirical
example of a very persistent and potentially integrated conditionally heteroscedastic series is inflation rates.9 We
generate yt series, t D 1; : : : ; T , with T D 1000, according to our AR(1)-GARCH(1,1)-M model. For simplicity,
we set ı D 2 and � D 0. The constants in the mean and conditional variance are set to ' D 0 and ! D 0:1. The
innovation et is assumed to be standard normal. We then apply the augmented Dickey–Fuller (DF) test (including
a constant) and the generalized least squares (GLS)-demeaned DF test (DF-GLS) as suggested by Elliot et al.
(1996) to the yt series.10 In both cases, the lag order is automatically selected by the Bayesian information criterion
(BIC). The following tables report the fraction of cases in which the null hypothesis of a unit root is rejected at the
5% significance level. The results are based on 10,000 Monte Carlo replications.

We first consider the case � D 1; that is, we are under the null hypothesis. Table I shows the rejection rates for
ˇ D 0:85 (low persistence in the conditional variance) and ˇ D 0:88 (high persistence in the conditional variance)
in combination with & D 0 or & D 0:3. The in-mean parameter # is varying from �2 to 2 in steps of 0.5. Clearly,
for # D 0, both tests are only slightly oversized. However, for the standard DF test, the size distortion becomes
stronger with j#j increasing. That is, although yt is I(1), the DF test tends to falsely reject the null hypothesis in
the presence of an in-mean effect. For a given value of # , the size distortion is stronger in the high persistence
case and in the presence of asymmetry. In sharp contrast, whenever # ¤ 0, the DF-GLS test never rejects the null
hypothesis, that is the DF-GLS is clearly undersized.

Next, we consider the behaviour of both tests under the alternative. In Table II, we set � D 0:9; that is, yt is
stationary. When # D 0, both tests reject the null in 100% of the replications. However, the table clearly shows
that the power of both tests deteriorates with j#j increasing. That is, the larger j#j is, the more persistence is

8 Figures 5 and 6 in the Supplementary Information illustrate the behaviour of the ACF when yt itself has moderate (� D 0:5) and high
(� D 0:9) intrinsic persistence.
9 Cavaliere and Taylor (2007) and Cavaliere and Taylor (2008b) illustrate the empirical relevance of their unit root testing techniques using
US inflation data.
10 We are grateful to Robinson Kruse for sharing his code for simulating the GLS-demeaned DF test (see Demetrescu and Kruse, 2013).
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Table I. Rejection rates under the null hypothesis .� D 1/

ˇ D 0:85 ˇ D 0:88

& D 0 & D 0:3 & D 0 & D 0:3

# DF DF-GLS DF DF-GLS DF DF-GLS DF DF-GLS

�2.00 0.10 0.00 0.18 0.00 0.26 0.00 0.24 0.00
�1.50 0.11 0.00 0.17 0.00 0.25 0.00 0.29 0.00
�1.00 0.09 0.00 0.17 0.00 0.25 0.00 0.26 0.00
�0.50 0.06 0.00 0.14 0.00 0.21 0.00 0.28 0.00
0.00 0.05 0.06 0.06 0.06 0.08 0.06 0.07 0.07
0.50 0.05 0.00 0.08 0.00 0.22 0.00 0.22 0.00
1.00 0.10 0.00 0.15 0.00 0.25 0.00 0.26 0.00
1.50 0.11 0.00 0.16 0.00 0.27 0.00 0.27 0.00
2.00 0.11 0.00 0.16 0.00 0.26 0.00 0.27 0.00

Notes: The table reports the rejection rates of the DF and DF-GLS tests over the 10,000 replica-
tions at the 5% nominal level.
DF, Dickey–Fuller; DF-GLS, Dickey–Fuller-generalized least square.

Table II. Rejection rates under the alternative .� D 0:9/

ˇ D 0:85 ˇ D 0:88

& D 0 & D 0:3 & D 0 & D 0:3

# DF DF-GLS DF DF-GLS DF DF-GLS DF DF-GLS

�2.00 0.52 0.00 0.07 0.00 0.04 0.00 0.00 0.00
�1.50 0.64 0.00 0.10 0.00 0.06 0.00 0.00 0.00
�1.00 0.83 0.00 0.29 0.00 0.12 0.00 0.00 0.00
�0.50 0.99 0.83 0.74 0.24 0.55 0.00 0.10 0.00
0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.50 0.99 0.85 0.92 0.63 0.55 0.00 0.18 0.00
1.00 0.86 0.00 0.58 0.00 0.11 0.00 0.03 0.00
1.50 0.64 0.00 0.32 0.00 0.07 0.00 0.01 0.00
2.00 0.54 0.00 0.17 0.00 0.04 0.00 0.01 0.00

Notes: The table reports the rejection rates of the DF and DF-GLS tests over the 10,000 replica-
tions at the 5% nominal level.
DF, Dickey–Fuller; DF-GLS, Dickey–Fuller-generalized least square.

transmitted from the conditional variance to the level of yt , and, hence, both tests falsely do not reject the null
hypothesis of yt being I(1). The results clearly suggest that unit root tests will have low power against alternatives
that allow for in-mean effects in combination with persistent conditional variances. In this case, a stationary yt
process may be easily confused with a process that is integrated of order one in the level.

2.3. Measures of Persistence

The aforementioned considerations suggest that conventional measures of persistence might result in misleading
conclusions regarding the persistence in the level of the yt process. The most often applied measures are (i) the
largest autoregressive root, which we denote by 
� D max.
1; 
2/ and (ii) the sum of the coefficients in the
autoregressive polynomial, that is, a1 C a2 (see e.g. Pivetta and Reis, 2007).11 Obviously, both measures would
ignore the presence of the in-mean effect and, hence, potentially overestimate the persistence in the mean, which
is partly induced by the persistence in the conditional variance.

We follow Fiorentini and Sentana (1998) who argue that any reasonable measure of shock persistence should
be based on the IRF. For a univariate process xt with Wold representation xt D

P1
jD0  jut�j , they define the

persistence of a shock ut on xt as P1.xt jut / D Var.xt /=Var.ut / D
P1
jD0  

2
j

. Clearly, P1.xt jut / will take

11 If #� > 0, then a1 C a2 D � C c.1� �/C #� > � C c.1� �/ > �; c.
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its minimum value of one if xt is white noise and will be infinite for a nonstationary process. A natural measure of
the interim persistence of the effect of a shock n periods after its occurrence is given by Pn.xt jut / D

Pn

jD0  
2
j

.
This measure can be calculated for both stationary and nonstationary processes.

In the following, we suggest persistence measures that are able to distinguish between the effects of a mean
shock and a volatility shock on the level and conditional variance respectively. We first obtain the bivariate Wold
representation of the univariate processes for yt and hı=2t given in equations (8) and (9).

Proposition 3. Let Assumption (A1) hold. Then, equations (8) and (9) admit the Wold representation

 
yt

h
ı
2

t

!
D

�
y�

�1

	
C

�
 y".L/  yv.L/

 h".L/  hv.L/

	�
"t
vt

	
; (14)

where y� D '�=.1 � a1 � a2/ and  ij .L/ D
P1
kD0  

.k/

ij
Lk; i D y; hI j D "; v with

 .0/y" D 1;  
.k/
y" D

"

k
1
.
1 � c/


1 � 
2
C

k
2
.
2 � c/


2 � 
1

#
; k � 1;

 .0/yv D 0;  
.k/
yv D #˛

 

k
1


1 � 
2
C


k
2


2 � 
1

!
; k � 1;

 .0/
h"
D 0;  .k/

h"
D �

 

k
1


1 � 
2
C


k
2


2 � 
1

!
; k � 1;

 .0/
hv
D 0;  .1/

hv
D ˛; .k/

hv
D ˛

"

k�1
1

.
1 � �/


1 � 
2
C

k�1
2

.
2 � �/


2 � 
1

#
; k � 2:

If �"v D 0, then "t and vt can be viewed as ‘structural’ shocks and the ‘IRFs’ of a one unit mean or variance
shock to the process yt are directly given by  .k/y" and  .k/yv . In general, the shocks "t and vt will be correlated
with covariance matrix † [see equation (4)]. Next, we define two uncorrelated white noise shocks Q"t and Qvt with
variances equal to one. These orthogonal shocks can be obtained from the original shocks via the transformation

�
Q"t
Qvt

	
D

�
�" 0


"v�v �v
p
1 � 
2"v

	�1 �
"t
vt

	
D e†�1 � "t

vt

	

with e†e†0 D †. Rewriting the Wold representation in terms of the orthogonal innovations yields

 
yt

h
ı
2

t

!
D

�
y�

�1

	
C

�
 y".L/  yv.L/

 h".L/  hv.L/

	�
�" 0


"v�v �v
p
1 � 
2"v

	�
Q"t
Qvt

	
:

Now, the variance of yt can be decomposed into two parts:12

V .yt / D P1 .yt j Q"t /C P1 .yt j Qvt / ; (15)

12 A similar decomposition of the variance of hı=2t is provided in the Supplementary Information B.5.
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where

P1 .yt j Q"t / D �
2
"P1.yt j"t /C 


2
"v�

2
vP1.yt jvt /C 2�"vP1

�
yt j
p
"tvt

�
(16)

and

P1 .yt j Qvt / D �
2
v

�
1 � 
2"v

�
P1.yt jvt / (17)

with individual components P1 .yt j"t / D
P1
kD0

�
 .k/y"

�2
, P1.yt jvt / D

P1
kD0

�
 .k/yv

�2
and P1

�
yt j
p
"tvt

�
DP1

kD0  
.k/
y"  

.k/
yv .

Following Fiorentini and Sentana (1998), we define the persistence of a standardized mean shock as
P1 .yt j Q"t /, that is, the part of the variance of yt that is due to Q"t innovations, and the persistence of a standard-
ized volatility shock as P1 .yt j Qvt /, that is, the part of the variance of yt that is due to Qvt innovations. Note that if
there is no asymmetry, that is, & D 0, then �"v D 0 and the two persistence measures P1 .yt j Q"t / and P1 .yt j Qvt /
are equal to the persistence measures with respect to the original shocks "t and vt scaled by the correspond-
ing variances. In the following proposition, we derive the expressions for the individual components of the two
persistence measures.

Proposition 4. If 0 < † < 1, then P1 .yt j Q"t / and P1 .yt j Qvt / are given by equations (16) and (17)
respectively where

P1.yt j"t / D 1C
1

.
1 � 
2/
2




2
1
.
1 � c/

2

1 � 
2
1

C

2
2
.
2 � c/

2

1 � 
2
2

�
2
1
2.
1 � c/.
2 � c/

1 � 
1
2

�
; (18)

P1.yt jvt / D
.#˛/2 .1C 
1
2/�

1 � 
2
1

� �
1 � 
2

2

�
.1 � 
1
2/

; (19)

P1
�
yt j
p
"tvt

�
D

#˛ Œ
2 � c C 
1.1 � c
2/��
1 � 
2

1

� �
1 � 
2

2

�
.1 � 
1
2/

: (20)

An interesting case is again the situation in which we have no level effects.

Lemma 2. If � D 0, then 
1 D �; 
2 D c and P1.yt j"t / D 1=.1 � �2/,

P1.yt jvt / D
.#˛/2.1C �c/

.1 � �2/.1 � c2/.1 � �c/
and P1

�
yt j
p
"tvt

�
D

#˛�

.1 � �c/.1 � �2/
:

Lemma 2 shows that without a level effect, the expression for P1.yt j"t / is the one for a simple AR(1) process
(see Fiorentini and Sentana, 1998). Unsurprisingly, if there is no in-mean effect, that is, # D 0, then P1.yt jvt / D
P1

�
yt j
p
"tvt

�
D 0. That is, P1 .yt j Q"t / D �2"P1 .yt j"t /. On the other hand, if there is no intrinsic persistence

in yt , that is, � D 0, then P1 .yt j"t / D 1; that is, the persistence measure takes its minimum value. Further,
� D 0 also implies that P1.yt jvt / D #2˛2=.1 � c2/ D #2P1

�
hı=2t jvt

�
; that is, the persistence of a vt shock
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on yt is the same as on hı=2t scaled by the squared in-mean term (see the Supplementary Information B.5). Finally,
the restriction � D 0 implies P1

�
yt j
p
"tvt

�
D 0.

In the Supplementary Information B.6, we derive an expression for the n-step ahead predictor E .ytCn jFt / of
ytCn, given the information available at time t .13 In particular, we show that the variance of the forecast error is
given by

V ŒFE .ytCn jFt /� D Pn .yt j Q"t /C Pn .yt j Qvt / ;

where Pn .yt j Q"t / and Pn .yt j Qvt / are defined analogously to P1 .yt j Q"t / and P1 .yt j Qvt /. Clearly, for covariance
stationary processes, limn!1 V ŒFE .ytCn jFt /� D P1 .yt j Q"t /C P1 .yt j Qvt /.

3. EMPIRICAL APPLICATIONS

3.1. S&P 500 Returns

First, suppose that yt denotes the stock returns. Then, standard empirical results would suggest that yt is basically
white noise, while its conditional variance is highly persistent; that is, � D 0, and c is close to one. On the other
hand, the risk-return trade-off implied by Merton’s (1973) intertemporal capital asset pricing model (ICAPM)
suggests that # > 0. For simplicity, we assume that � D 0; that is, there is no level effect. In this case, equation (11)
reduces to an ARMA(1,1) with c being the AR(1) parameter. Thus, under this parameter constellation, yt can be
only white noise if c D � . However, for ı D 2 and # ¤ 0, it is straightforward to show that the moving average
parameter is always less than c. The two parameters are identical only in the trivial case in which there is no
in-mean effect, that is, # D 0. This property of the model may explain why the in-mean parameter is typically
estimated to be close to and not significantly different from zero (see e.g. French et al., 1987). Thus, within the
GARCH(1,1)-M model with ı D 2, the possibility of having time-varying expected returns and at the same time
uncorrelated returns is ruled out by construction. In sharp contrast, for ı D 1, we can show that � D c if and
only if either # D 0 or # D &.1 � c2/=

�
c˛
�
1C &2 � 2

�

��
. That is, in the model with ı D 1 and asymmetry,

we can have time-varying expected returns and at the same time white noise returns.14 Figure 3 plots c and � with
asymmetry term & D 0:5 and the remaining parameters fixed as described in the caption of the figure.

We estimate the AR(1)-APARCH(1,1)-M model for the daily continuously compounded returns on the S&P
500 during the 03 January 1975 to 20 August 2014 period. The data were obtained from YahooFinance!. In line
with the aforementioned considerations, we choose ı D 1. As panel A of Table III shows, the in-mean parameter
is positive and significant, which confirms the risk-return trade-off suggested by the ICAPM. As expected, the
asymmetry parameter is positive and highly significant. The estimated parameters imply a correlation of �0:74
between "t and vt . In addition, since the implied c and � are basically the same, the ARMA(2,1) reduces to an
AR(1) with a small but highly significant � parameter. Despite the presence of the in-mean effect, the variance of
the returns is almost entirely explained by the mean shocks.15

3.2. US Inflation

In this example, we link our specification to the discussion on how to model US inflation. Stock and Watson (2007)
find that an IMA(1,1) model is a good approximation for the quarterly US inflation rate [as measured by the GDP

13 For a more general treatment of optimal predictors in ARMA models with GARCH-M effects, see Karanasos (2001).
14 See the Supplementary Information B.1 for details.
15 When we estimate the unrestricted model, the power term is equal to 1.335 (0.150), while the other parameters hardly change. In sharp
contrast, when we impose the restriction ı D 2, the in-mean parameter # becomes insignificant (results not reported).
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Figure 3. � as a function of # between �3.0 and 3.0. The other parameters are given by ' D 0:05, � D 0:0, ! D 0:1, ˛ D 0:1,
ˇ D 0:8, � D 0:0, ı D 1 and & D 0:5

Table III. Parameter estimates for stock returns and inflation

Panel A: S&P 500 return data (03 January 1975 to 20 August 2014)

' � # ! ˛ & ˇ ı
�0:033
.0:030/

0:036
.0:010/

0:068
.0:037/

0:021
.0:004/

0:073
.0:012/

0:653
.0:071/

0:922
.0:011/

1
.�/

Corr."t ; vt / c � P1 .yt jQ"t / P1 .yt j Qvt /
�0:735 0.981 0.984 1.333 0.0003

Panel B: US inflation (1960/Q1–2014/Q2)

' � # ! ˛ & ˇ ı
0:250
.0:122/

0:779
.0:047/

0:384
.0:168/

0:029
.0:027/

0:094
.0:033/

– 0:884
.0:050/

2
.�/

Corr."t ; vt / c � P1 .yt jQ"t / P1 .yt j Qvt /
0 0.978 0.924 3.338 3.193

Notes: The numbers in parentheses are Bollerslev–Wooldridge robust standard errors.

(gross domestic product) deflator]. Since AR-GARCH-M models are often used to model the US inflation rate
(see e.g. Grier and Perry, 2000), it is interesting to investigate how this specification links to the IMA(1,1). For
illustrative purposes, consider again the case without level effect. In this situation, the inverse roots are given by

1 D � and 
2 D c. Suppose that yt denotes the inflation rate. Given the empirical evidence on the persistence in
the conditional variance of the inflation series, it is reasonable to assume that c D 1. According to equation (11),
the reduced form process for yt is then given by

.1 � �L/.1 � L/yt D '
� C .1 � �L/�t ;

that is, by an ARIMA(1,1,1). Clearly, if � D 0, the reduced form representation of the AR(1)-APARCH(1,1)-M
specification coincides with the IMA(1,1) model proposed by Stock and Watson (2007).16

Further, Stock and Watson (2007) argue that the IMA(1,1) process is observationally equivalent to an unob-
served components model with the transitory component being white noise and the permanent component a

16 Alternatively, the IMA(1,1) model could be obtained by assuming that yt denotes the log price level with c D 1 and � D 1.
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Figure 4. � as a function of !. The other parameters are given by ' D 0:05, � D 0:0, # D 0:1, ˛ D 0:1, � D 0, ı D 2, & D 0
(solid), & D �0:2 (dotted) and & D �0:4 (dashed). ˇ is chosen such that c D 0:95

random walk with drift. The MA(1) parameter is then inversely related to the ratio of the variances of the inno-
vations in the permanent and the transitory component. In particular, they argue that the MA(1) parameter has
increased during the ‘Great Moderation’ because of a decrease in the variance of the permanent component during
that period. Figure 4 shows � as a function of ! and for different values of & while holding the other parameters
fixed as described in the caption. The figure clearly shows that in the APARCH-M specification, a decrease in the
unconditional variance, that is, a decrease in !, has the same effect as the one described by Stock and Watson
(2007); that is, it will increase the MA(1) parameter.

Next, we apply our model to US inflation data. Seasonally adjusted quarterly GDP deflator data were obtained
from the Federal Reserve Bank of St. Louis for the period 1960/Q1–2014/Q2. The inflation rate was calculated as
yt D 400 � Œln.Pt / � ln.Pt�1/�, where Pt denotes the price level in quarter t . Both the DF and DF-GLS tests
reject the null hypothesis of a unit root in the inflation rate at the 1% significance level (results not reported). Panel
B of Table III presents the estimation results. In line with the previous literature on the link between the level of
inflation and its conditional variance, we set ı D 2. As expected, the conditional variance is highly persistent with
c D 0:978, that is, close to integrated behaviour.17 In agreement with the so-called Friedman (1977) hypothesis,
the in-mean parameter is positive and significant; that is, the higher the conditional variance, the higher the level
of inflation. Since � D 0:779 and the implied MA(1) parameter is � D 0:924, our results suggest that the reduced
form process is (close to) an ARIMA(1,1,1). Finally, the two persistence measures show that both mean and
variance shocks contribute almost equally to the variation of the inflation rate.

4. CONCLUSIONS

We discuss the persistence properties of the AR(1)-APARCH(1,1)-ML model. This model allows for an in-mean
effect as well as a level effect. Both effects are in line with economic theory, which, for example, suggests that
inflation uncertainty should have an effect on the level of inflation and vice versa. Our main result is that the

17 When using quarterly GDP deflator data, we do not find evidence for asymmetry in the conditional variance. However, such evidence can
be found in monthly consumer price index (CPI) inflation series.
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commonly observed persistence in the mean/conditional variance of many economic times series may be at least
partly a result of a transmission mechanism. If this mechanism is ignored, then conventional procedures for esti-
mating the persistence in the mean/variance may lead to biased estimates. In particular, unit root tests might falsely
indicate a unit root and, hence, suggest the modelling of the differenced series rather than the level series.
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APPENDIX A

A1. Proofs

Proof of Proposition 1
Multiplying equation (1) by (1�cL) and substituting (3) into equation (1) give equation (8). Similarly, multiplying
equation (3) by (1 � �L) and substituting (1) into equation (3) give equation (9).

Proof of Proposition 2
Taking expectations from both sides of equation (9) yields equation (10).

Proof of Proposition 3
On account of equations (8) and (9) and equation (A.1) in Karanasos (2007), we obtain equation (14) by
straightforward manipulation.

Proof of Proposition 4
The desired result is obtained straightforwardly from Proposition 3.
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