
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=rejf20

The European Journal of Finance

ISSN: 1351-847X (Print) 1466-4364 (Online) Journal homepage: https://www.tandfonline.com/loi/rejf20

On the macro-drivers of realized volatility: the
destabilizing impact of UK policy uncertainty
across Europe

M. Karanasos & S. Yfanti

To cite this article: M. Karanasos & S. Yfanti (2020) On the macro-drivers of realized volatility:
the destabilizing impact of UK policy uncertainty across Europe, The European Journal of Finance,
26:12, 1146-1183, DOI: 10.1080/1351847X.2020.1732437

To link to this article:  https://doi.org/10.1080/1351847X.2020.1732437

View supplementary material 

Published online: 28 Feb 2020.

Submit your article to this journal 

Article views: 218

View related articles 

View Crossmark data

Citing articles: 1 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=rejf20
https://www.tandfonline.com/loi/rejf20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/1351847X.2020.1732437
https://doi.org/10.1080/1351847X.2020.1732437
https://www.tandfonline.com/doi/suppl/10.1080/1351847X.2020.1732437
https://www.tandfonline.com/doi/suppl/10.1080/1351847X.2020.1732437
https://www.tandfonline.com/action/authorSubmission?journalCode=rejf20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=rejf20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/1351847X.2020.1732437
https://www.tandfonline.com/doi/mlt/10.1080/1351847X.2020.1732437
http://crossmark.crossref.org/dialog/?doi=10.1080/1351847X.2020.1732437&domain=pdf&date_stamp=2020-02-28
http://crossmark.crossref.org/dialog/?doi=10.1080/1351847X.2020.1732437&domain=pdf&date_stamp=2020-02-28
https://www.tandfonline.com/doi/citedby/10.1080/1351847X.2020.1732437#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/1351847X.2020.1732437#tabModule


THE EUROPEAN JOURNAL OF FINANCE
2020, VOL. 26, NO. 12, 1146–1183
https://doi.org/10.1080/1351847X.2020.1732437

On the macro-drivers of realized volatility: the destabilizing impact of UK
policy uncertainty across Europe

M. Karanasosa and S. Yfanti b

aBrunel University London, Uxbridge, UK; bLoughborough University, Loughborough, UK

ABSTRACT
This paper studies the bivariate HEAVY system of daily and intra-daily volatility equa-
tions and its macro-augmented asymmetric power extension. We focus on economic
drivers that exacerbate stockmarket volatility and canbeproved tobemajor threats for
financial stability. Our study proves the inflammatory effects of UK Policy Uncertainty
alongside global credit and commodity factors that spread across European financial
markets. This UK-led spillover phenomenon shouldbe consideredbyworldmarket par-
ticipants and recognized, monitored and mitigated by policymakers amid the Brexit
fears and the associated highly probable harm for Europe. Other findings are as fol-
lows. First, once we allow for power transformations, asymmetries, andmacro-effects in
the benchmark specification, it is found that both powered conditional variances are
significantly affected by the powers of squared negative returns and realized measure,
further improving the HEAVY framework’s forecasting accuracy. Second, the struc-
tural breaks applied to the bivariate system capture the time-varying behavior of the
parameters, in particular during the global financial crisis of 2007/08. Third, higher
UK uncertainty levels increase the leverage and global macro-effects from credit and
commodity markets on all European stock markets’ realized volatilities.
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1. Introduction

The volatility of financial returns constitutes a pivotal part of empirical finance and econometrics research, with
crucial implications for financial risk management practices, and financial stability oversight. Robust modeling
and reliable forecasting the volatility trajectory of financial instruments has been the main task and objective
of financial economics applications for business operations, given that volatility constitutes one of the funda-
mental input variables in estimations and decision processes of any corporation on derivatives pricing, portfolio
optimization, investment diversification, firm valuation, and funding choices. Financial volatility is also closely
inspected by policymakers since it entails critical destabilizing threats for the financial system.

Intriguingly, the financial econometrics literature on realized volatility dynamics mostly ignores important
macro-factors that affect the volatility pattern in the high-frequency domain. In this vein, we examine the role of
uncertainty, besides other macro-proxies, in volatility modeling using the news-based Economic Policy Uncer-
tainty Index, the sole uncertainty metric provided in daily frequency by Baker, Bloom, and Davis (2016) for
the United States and the United Kingdom and considered as the most comprehensive one, including both
economic and policy-related constituents of uncertainty. Our motivation to explore the uncertainty effects on
financial volatility derives from the recent resurgence of research interest in uncertainty, partly stimulated by
the global crisis of 2008 and primarily reflected in the definition and measurement debate of this ‘amorphous’
concept by economists (Bloom 2014). Following the Knightian definition (Knight 1921) and the early studies
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on uncertainty by Bernanke (1983) and Dixit and Pindyck (1994), academics and practitioners have attempted
to objectively quantify this latent variable to reflect the prevailing uncertainty in the process of decision mak-
ing by economic agents. Consumers’ spending and saving behavior, firms’ hiring, financing and investment
choices, investors’ asset allocation, central banks, and government policy decisions are heavily affected by their
‘inability to forecast the likelihood of events happening’ according to Frank Knight (Bloom 2014). In princi-
ple, the prevailing uncertainty is evidenced to elicit potent disruptions in the real economy through financial
and credit markets, dampening the general confidence and discouraging market participants from doing busi-
ness. Undoubtedly, in times of elevated uncertainty, households tend to reduce consumption and increase
precautionary savings and firms postpone investments (‘wait and see’ tactics) and refrain from hiring. Sim-
ilarly, investors in financial markets concerned with uncertainty react, evoking the progressive slowdown or
often the steep fall of asset price returns (either through the discount rate or the cash flow channel) and
synchronously driving volatility to jump (Pastor and Veronesi 2013). Simultaneously, in the credit markets
uncertainty commands a risk premium in the cost of capital, foreshadowing the possible meteoric rise of
the financing cost for firms (Alessandri and Mumtaz 2019) and undermining general trust in the financial
system.

This paper examines the HEAVY model of Shephard and Sheppard (2010), which jointly estimates condi-
tional variances based on both daily (squared returns) and intra-daily (realized variance) data, by enriching the
bivariate system, firstly, with asymmetries and power transformations, through the structure of Ding, Granger,
and Engle (1993). Motivated by the widely-recognized merits of the APARCH framework, which considerably
improves Bollerslev’s GARCH process by adding leverage and power effects (see, for example, Karanasos and
Kim 2006), we similarly extend the HEAVY system with these two main features of asymmetries and power
transformations to prove its superiority over the benchmark specification. The optimal estimation of the power
term and the asymmetric response to positive and negative shocks embedded in the time-varying volatility pat-
tern have already proved to be one of the most pivotal innovations in the GARCH family of models (see, for
example, Brooks et al. 2000). Among others, Pérez, Ruiz, and Veiga (2009, see the references therein for more
details) show that the presence of an asymmetric response of volatility to positive and negative returns shows
up in non-zero cross-correlations between original returns and future powers of absolute returns. One of our
main findings is that each of the two powered conditional variances is significantly affected by the first lags of
both power transformed variables, that is, squared negative returns, and realized variance (or, for the latter, its
negative signed values). Secondly, we extend the asymmetric power specification with macro-effects from Eco-
nomic Policy Uncertainty, Bond and Commodity market benchmarks, providing a competing framework of
volatility modeling to the well-established practice of financial instruments trading and risk measuring based
on economic fundamentals.

We analyze the macro-augmented Asymmetric Power HEAVY model in depth and we investigate its per-
formance over eleven European stock indices, considering common volatility effects from UK Economic Policy
Uncertainty and global bond and commodity market factors. The UK Economic Policy Uncertainty is the only
daily uncertainty metric provided for European economies and should lie in the epicenter of academics’ and
practitioners’ interest in European macro-financial linkages. Since it nowadays reflects the major Brexit fear
effects on agents’ expectations among other issues related directly to the Anglo-Saxon and the European and
global economy, as well, we anticipate that its effect on financial markets can be proved a critical destabiliz-
ing factor across the whole continent. The asymmetric power model for the returns equation pools information
across both low- and high-frequency based volatility indicators. Similarly, themore richly parametrizedHEAVY
process for the realized variance equation is bolstered with low-frequency information as well since the lagged
value of the powered squared negative returns improves the forecasting performance of the model. The realized
measure also receives significant positive impact from all macro-variables included, that is uncertainty, bond
and commodity market conditions with further improvement of the model’s forecasting performance. More-
over, in the presence of structural breaks, which are apparent in the two power transformed volatility measures,
we re-estimate the bivariate system including dummy variables, and we present the time-varying behavior of
the parameters. Focusing on the recent global financial crisis, we observe that their values increase significantly
after the crisis. Finally, we examine not only the direct destabilizing effect of uncertainty on realized volatility,
by using it as a regressor to the HEAVY process, but also the impact on each parameter of the system, proving
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that higher uncertainty levels inflate the leverage and macro-effects from credit and commodity markets on the
realized measure.

In the advent of the crisis, when volatilities increased sharply and persistently with crucial systemic risk exter-
nalities, we witnessed a reigniting interest of regulators and academics in meaningful volatility estimates, while,
at the same time, practitioners remained alert to improving the relevant volatility frameworks on a day-to-day
basis. Financial economics scholars focused on volatility as a potent catalyst of systemic risk build-up, which
policymakers tried to limit. To the best of our knowledge, we are the first to extend the benchmark HEAVY
model with asymmetries, power transformations and macro-effects, providing a well-defined framework that
adequately fits the volatility process. Our framework contributes to twomain strands of empiricalmacro-finance
literature: the research on volatility modeling and the macro-financial linkages with the investigation of the cru-
cial uncertainty effects on financial market stability. The bivariate system of the two volatility equations, we
establish, is ready-to-use not only on stock market returns but also on further asset classes or financial instru-
ments (e.g. exchange rate, cryptocurrency, commodity, real estate, and bond returns, associating them with
alternative macro-proxies besides uncertainty) and multiple financial economics applications of business oper-
ations, such as bonds investing, foreign exchange trading and commodities hedging, core daily functions in the
treasuries of most financial and non-financial corporations.

Overall, our proposed volatility modeling framework improves the HEAVY model, with major implications
for market practitioners and policymakers on forecasting the financial returns’ secondmoment. Volatility mod-
eling and forecasting are essential for asset allocation, pricing and riskmanagement hedging strategies. A reliable
volatility forecast, exploiting in full the high-frequency domain and the macro-financial linkages, is the input
variable of paramount importance for the processes of derivatives pricing, effective cross-hedging, Value-at-Risk
measurement, investment allocation and portfolio optimization with different asset classes and financial instru-
ments.Moreover, the robust volatilitymodeling approachwe introduce provides a useful tool not only formarket
players but also for policymakers. Policymaking includes continuous oversight duties and prudential regulation
practices. In this vein, it is imperative for the authorities to account for the volatility of financial markets across
every aspect of the financial system’s policy responses, both post-crisis through stabilization policy reactions and
pre-crisis through proactive assessment of financial risks. Focusing, here, on the UK uncertainty effect across
the European stock markets is crucial due to the close inspection by policymakers and the huge concern by
market players of the financial disruption risks contingent on the final Brexit outcome and the prevailing Brexit
uncertainty since the 2016 referendum.

The paper proceeds as follows. In Section 2, we detail the HEAVY formulation with our extended specifica-
tion, which allows for asymmetries, power transformations, and macro-effects. Section 3 describes the data and
Section 4 presents the estimation results for (i) the benchmark process, (ii) the macro-augmented asymmetric
power models, (iii) the multiple-step-ahead forecasts that measure the out-of-sample performance of the vari-
ous specifications, and (iv) the asymmetric power formulations with structural breaks. Section 5 focuses on the
UK uncertainty effects across the parameters of the HEAVY specifications and Section 6 discusses the policy
implications of our findings. Finally, Section 7 concludes the analysis.

2. The HEAVY framework

There are several studies introducing non-parametric estimators of realized volatility using high-frequencymar-
ket data. Andersen and Bollerslev (1998), Andersen et al. (2001) and Barndorff-Nielsen and Shephard (2002)
were the first that econometrically formalized the realized variancewith quadratic variation-likemeasures, while
Barndorff-Nielsen et al. (2008, 2009) focused on the realized kernel estimation as a realized measure which is
more robust to noise. Consequently, a large body of empirical research focuses on modeling and forecasting the
realized volatility. Various studies combine it with the conditional variance of returns. Engle (2002b) proposed
the GARCH-X process, where the former is included as an exogenous variable in the equation of the latter. Corsi
et al. (2008) suggested the HAR-GARCH formulation for modeling the volatility of realized volatility. Hansen,
Huang, and Shek (2012) introduced the Realized GARCHmodel that corresponds more closely to the HEAVY
framework of Shephard and Sheppard (2010), which jointly estimates conditional variances based on both daily
(squared returns) and intra-daily (it uses the realized measure - kernel and variance – as a measure of ex-post
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volatility) data, so that the system of equations adopts to information arrival more rapidly than the classic daily
GARCH process. One of its advantages is the robustness to certain forms of structural breaks, especially during
crisis periods, since the mean reversion and short-run momentum effects result in higher quality performance
in volatility level shifts andmore reliable forecasts. Borovkova andMahakena (2015) employed a HEAVY speci-
fication with a skewed-t error distribution, while Huang, Liu, andWang (2016) incorporated the HAR structure
of the realized measure in the GARCH conditional variance specification in order to capture the long memory
of the volatility dynamics.

TheHEAVYmodel of Shephard and Sheppard (2010) can be extended inmanydirections.We allow for power
transformations, leverage andmacroeconomic effects in the conditional variance process. We run the estimated
benchmark specification, enriched with the three key features to improve volatility modeling and forecasting
further.

2.1. The benchmarkmodel

TheHEAVYmodel uses two variables: the close-to-close stock returns (rt) and the realizedmeasure of variation
based on high-frequency data, RMt . We first form the signed square rooted (SSR) realized measure as follows:
R̃Mt = sign(rt)

√
RMt , where sign(rt) = 1, if rt � 0 and sign(rt) = −1, if rt < 0.

We assume that the returns and the SSR realized measure are characterized by the following relations:

rt = ertσrt , R̃Mt = eRtσRt , (1)

where the stochastic term eit is independent and identically distributed (i.i.d), i = r, R; σit is positive with prob-
ability one for all t and it is a measurable function of F (XF)

t−1 , that is the filtration generated by all available
information through time t−1. We will use F (HF)

t−1 (X = H) for the high-frequency past data, i.e. for the case
of the realizedmeasure, orF (LoF)

t−1 (X = Lo) for the low-frequency past data, i.e. for the case of the close-to-close
returns. Hereafter, for notational convenience, we will drop the superscript XF.

In the HEAVY/GARCH model eit has zero mean and unit variance. Therefore, the two series have zero
conditional means, and their conditional variances are given by

E(r2t |Ft−1) = σ 2
rt , and E(R̃Mt

2 |Ft−1) = E(RMt |Ft−1) = σ 2
Rt , (2)

where E(·) denotes the expectation operator. The returns equation is called HEAVY-r and, similarly, the realized
measure equation is denoted as HEAVY-R.

2.2. Themacro-augmented asymmetric power specification

The asymmetric power (AP) specification for the HEAVY(1, 1) model consists of the following equations (in
what follows, for notational simplicity, we will drop the order of the model if it is (1, 1)):

(1 − βiL)(σ 2
it )

δi/2 = ωi + (αir + γirst−1)L(r2t )
δr/2 + (αiR + γiRst−1)L(RMt)

δR/2, (3)

where L is the lag operator, δi ∈ R>0 (the set of the positive real numbers), for i = r,R, are the power parameters,
and st = 0.5[1 − sign(rt)], that is, st = 1 if rt < 0 and 0 otherwise; γii, γij (i �= j) are the own and cross leverage
parameters, respectively1; positive γii, γijmeans a larger contribution of negative ‘shocks’ in the volatility process.
In this specification the powered conditional variance, (σ 2

it )
δi/2, is a linear function of the lagged values of the

powered transformed squared returns and realized measure.
We will distinguish between three different asymmetric cases: the double one (DA: γij �= 0 for all i and j) and

two more, own asymmetry (OA: γij = 0 for i �= j only) and cross asymmetry (CA: γii = 0).
The αiR and γiR are called the (four) Heavy parameters (own when i = R and cross when i �= R). These

parameters capture the impact of the realized measure on the two conditional variances. Similarly, the αir and
γir (four in total) are called the Arch parameters (own when i = r and cross for i �= r). They depict the influence
of the squared returns on the two conditional variances.
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The asymmetric power model is equivalent to a bivariate AP-GARCH process for the returns and the SSR
realized measure (see, for example, Conrad and Karanasos 2010). If all four Arch parameters are zero, then we
have the AP version of the benchmark HEAVY specification, where the only unconditional regressor is the first
lag of the powered RMt .

Next, we provide a comparison between the benchmark HEAVY system and the more general AP specifica-
tion. Their difference is captured by the matrix C (see Equation (B.6) of the Supplementary Appendix). We will
examine the bivariate case, which is whenN = 2. For themore general DAP specification,C is a full matrix with:
(i) diagonal elements given by βi + (αii + γii/2)zi, i = r, R, where zi = E(|eit|δi , and (ii) off-diagonal elements
given by (αij + γij)zj, i, j = r, R, for i �= j. For the benchmark model, since γij = 0, zi = 1, for all i, j = r, R, and
αRi = 0, C is restricted to being an upper diagonal matrix. That is, we have

DAP Specification : C=
[
βr + (αrr + γrr/2)zr (αrR + γrR/2)zR
(αRr + γRr/2)zr βR + (αRR + γRR/2)zR

]

Benchmark HEAVY : C=
[
βr αrR
0 βR + αRR

]
.

Figure 1 presents the comparison of the benchmark and DAP-HEAVY models’ forecasting performance (see
also Section 4.3). We apply the optimal predictor |rt|∧δ (under Proposition 3 of the Supplementary Appendix)
on FTSE 100 returns and realized variance data and calculate 50-step ahead forecasts. The more general specifi-
cation produces forecasts significantly closer to the actual values for both returns (Figure 1(a and b)) and realized
measure (Figure 1(c and d)). Most importantly, its forecasts are more accurate in peaks of returns and realized
variance actual values. The benchmark model remains behind our proposed asymmetric power extension in
predicting low- and high-frequency volatility indicators. It produces, mostly, lower volatility forecasts (dotted
lines) in comparison with DAP (dashed lines) and actual (solid lines) values. Therefore, our main contribution,
that is the asymmetric power extension, provides a significant improvement to the HEAVY system of Shephard
and Sheppard (2010).

Furthermore, we should mention that all the parameters in this bivariate system should take non-negative
values (see, for example, Conrad andKaranasos 2010). Therefore, we extend the realizedmeasure equation of the
model with the non-negativemacro-proxies: the UKEconomic Policy Uncertainty, EPUt , the Bonds (theMerrill
LynchMOVE 1month treasury bonds implied volatility index, theMoody’s AAA&BAA corporate bonds yields
or the Moody’s BAA over AAA corporate bonds spreads), BOt , and the Commodities (the S&P GSCI index or
the Crude oil WTI prices), COt , market benchmark indices. The macro-augmented (m-) AP-HEAVY system is
characterized by the following equation for the realized measure:

(1 − βRL)(σ 2
Rt)

δR/2 = ωR + (αRr + γRrst−1)L(r2t )
δr/2 + (αRR + γRRst−1)L(RMt)

δR/2

+ φREPUt−1 + ζRBOt−1 + ϑRCOt−1 (4)

Equation (4) incorporates threeMacro parameters,φR, ζR, andϑR, which capture themacro-effects on the power
transformed realized measure. The returns equation remains the same as in the non-augmented specification,
without the direct effect from the macro-variables (φr , ζr ,ϑr = 0).

To sum up, the benchmark model (Equation (2)) is characterized by two conditional variance equations, the
GARCH(1,0)-X formulation for returns and the GARCH(1,1) formulation for the SSR realized measure:

HEAVY−r : (1 − βrL)σ 2
rt = ωr + αrRL(RMt),

HEAVY−R : (1 − βRL)σ 2
Rt = ωR + αRRL(RMt)

Equation (4) gives the general formulation of our macro-augmented extension for RMt , which adds asymme-
tries and power transformations to the benchmark specification (see also the Supplementary Appendix for our
theoretical considerations). We also use the existing Gaussian quasi-likelihood estimators and multistep-ahead
predictors already applied (Ding, Granger, and Engle 1993) in the APARCH framework (see, for example, He
and Teräsvirta 1999; Laurent 2004; Karanasos and Kim 2006). We will first estimate both conditional variance



THE EUROPEAN JOURNAL OF FINANCE 1151

Figure 1. FTSE 100 Returns and Realized Variance k-step ahead forecasts.

equations in the general formwith all Heavy, Arch andAsymmetry parameters given by Equation (4) and in case
a parameter is insignificant, wewill exclude it and this will result in a reduced formwhich is statistically preferred
for each volatility process. For example, in the returns and realizedmeasure conditional variances estimation, the
own and cross Arch parameters (αrr and αRr respectively) prove to be insignificant and are, therefore, excluded
(see Section 4.2, Tables 3A and 3B) since this is the way to reach the returns and realized measure formulations
that are statistically preferred.

3. Data description

The HEAVY framework is estimated for eleven European stock indices returns and realized volatilities. Accord-
ing to the analysis in Shephard and Sheppard (2010), the HEAVY formulation improves the volatility modeling
considerably by allowing momentum and mean reversion effects and adjusting quickly to the structural breaks
in volatility. We extend the benchmark specification in Shephard and Sheppard (2010), by adding the features
of power transformed conditional variances, leverage, and macro-effects in the volatility process. Moreover,
in order to identify the possible recent global financial crisis effects on the volatility process and to take into
account the structural breaks in the two powered series (squared returns and realized measure), in Section 4.4,
we incorporate dummies in our empirical investigation.

3.1. Oxford-man institute’s library

We use daily data for eleven European stock market indices extracted from the Oxford-Man Institute’s (OMI)
realized library version 0.3 (Heber et al. 2009): FTSE 100 (FTSE) from the UK, EURO STOXX 50 (EU) from
the Eurozone, DAX 30 (DAX) from Germany, CAC 40 (CAC) from France, AEX from the Netherlands, Bell 20
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(BELL) fromBelgium, IBEX 35 (IBEX) fromSpain, the Swiss StockMarket Index (SSMI), theOMXCopenhagen
20 index (OMXC) from Denmark, the OMX Stockholm All Share index (OMXS) from Sweden and the Oslo
ExchangeAll Share index (OSE) fromNorway. Our sample covers the period from2001 to 2019 formost indices.
For OMXC and OMXS, the data start from 2005. The OMI’s realized library includes daily stock market returns
and several realized volatility measures calculated on high-frequency data from the Reuters DataScope Tick
History database. The data are first cleaned and then used in the realized measures calculations. According to
the library’s documentation, the data cleaning consists of deleting records outside the time interval that the stock
exchange is open. Someminormanual changes are also neededwhen results are ineligible due to the re-basing of
indices.We use the daily closing prices, PCt , to form the daily returns as follows: rt = [ln(PCt ) − ln(PCt−1)] × 100,
and two realized measures as drawn from the library: the 5-minute realized variance and the realized kernel.
The estimation results using the two alternative measures are very similar, so we present only the ones with the
realized variance (the results for the realized kernel are available upon request).

3.2. Realizedmeasures

The library’s realized measures are calculated in the way described in Shephard and Sheppard (2010). The real-
ized kernel, which we use as an alternative to the realized variance (results are not reported but they are available
upon request), is calculated using a Parzen weight function as follows: RKt = ∑H

k=−H k(h/(H + 1))γh, where
k(x) is the Parzen kernel function with γh = ∑n

j=|h|+1 xj,txj−|h|,t ; xjt = Xtj,t − Xtj−1,t are the 5-minute intra-daily
returns where Xtj,t are the intra-daily log-prices and tj,t are the times of trades on the tth day. Shephard and
Sheppard (2010) declared that they selected the bandwidth of H as in Barndorff-Nielsen et al. (2009).

The 5-minute realized variance, RVt , which we choose to present here, is calculated with the formula:
RVt = ∑

x2j,t . Heber et al. (2009) additionally implement a subsampling procedure from the data to themost fea-
sible level in order to eliminate the stock market noise effects. The subsampling involves averaging across many
realized variance estimations from different data subsets (see also the references in Shephard and Sheppard 2010
for realized measures surveys, noise effects and subsampling procedures).

Table 1 presents the eleven stock indices extracted from the database and provides volatility estimations for
each one’s squared returns and realized variances time series for the respective sample period (see also the FTSE
series graphs in Appendix A.2, Figures A1–A2). We calculate the standard deviation of the series and the annu-
alized volatility. Annualized volatility is the square rooted mean of 252 times the squared return or the realized
variance. The standard deviations are always lower than the annualized volatilities. The realized variances have
lower annualized volatilities and standard deviations than the squared returns since they ignore the overnight
effects and are affected by less noise. The returns represent the close-to-close yield and the realized variances the
open-to-close variation. The annualized volatility of the realized measure is between 15% and 20%, while the
squared returns show figures from 18% to 23%.

Table 1. Data Description.

Total Sample period r2t RVt

Index Start date End date Obs. Avol sd Avol sd

FTSE 02/01/2001 01/03/2019 4581 0.182 0.039 0.172 0.028
EU 02/01/2001 01/03/2019 4631 0.227 0.055 0.201 0.032
DAX 02/01/2001 01/03/2019 4609 0.232 0.060 0.203 0.030
CAC 02/01/2001 01/03/2019 4635 0.223 0.053 0.183 0.023
AEX 02/01/2001 01/03/2019 4635 0.221 0.057 0.171 0.020
BELL 02/01/2001 01/03/2019 4633 0.193 0.043 0.147 0.014
IBEX 02/01/2001 01/03/2019 4604 0.229 0.059 0.189 0.021
SSMI 03/01/2001 01/03/2019 4552 0.187 0.043 0.147 0.016
OMXC 04/10/2005 01/03/2019 3338 0.206 0.048 0.181 0.038
OMXS 04/10/2005 01/03/2019 3367 0.209 0.051 0.161 0.030
OSE 04/09/2001 01/03/2019 4363 0.219 0.055 0.180 0.027

Notes: Avol is the annualized volatility and sd is the standard deviation.
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Figure 2. Autocorrelation of FTSE 100 |rt|δr for δr = 1.5, 1.7, 2.0.

Next, we examine the sample autocorrelations of the power transformed absolute returns |rt|δr and signed
square rooted realized variance |SSR_RMt|δR for various values of δi. Figures 2 and 3 show the autocorrelograms
of the FTSE 100 index from lag 1 to 120 for δr = 1.5, 1.7, 2.0 and δR = 1.3, 1.6, 2.0 (similar autocorrelograms for
the other ten indices available upon request). The sample autocorrelations for |rt|1.5 are greater than the sample
autocorrelations of |rt|δr for δr = 1.7, 2.0 at every lag up to at least 120 lags. In other words, the most interesting
finding from the autocorrelogram is that |rt|δr has the strongest and slowest decaying autocorrelation when

Figure 3. Autocorrelation of FTSE 100 |SSM_RMt|δR for δR = 1.3, 1.6, 2.0.
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Figure 4. Autocorrelation of FTSE 100 |rt|δr at lags 1, 12, 36, 72, 96.

Figure 5. Autocorrelation of FTSE 100 |SSM_RMt|δR at lags 1, 12, 36, 72, 96.

δr = 1.5. Similarly, for the realized measure, the power with the strongest autocorrelation function is δR = 1.3.
Furthermore, Figures 4 and 5 present the sample autocorrelations of |rt|δr and |SSR_RMt|δR as a function of δi for
lags 1, 12, 36, 72 and 96. For example, for lag 12, the highest autocorrelation values of power transformed absolute
returns and signed square rooted realized variance are calculated closer to the power of 1.5 and 1.0, respectively.
These figures explain our motivation to extend the benchmark HEAVY through the APARCH framework of
Ding, Granger, and Engle (1993) and confirm the power choice of our econometric models, which is δr = 1.5
for returns and δR = 1.3 for the realized measure (see Section 4.2).

3.3. Macroeconomic proxies

In order to shed light on the macro-financial linkages, we augment the financial volatility HEAVY process with
non-negative macro-proxies of daily frequency. The extant literature on the economic sources of stock market
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volatility mainly uses lower frequency economic variables (monthly or quarterly). From Schwert (1989) and
Hamilton and Lin (1996), who were among the pioneers that relatedmonthly stockmarket volatility to the busi-
ness cycle, until Engle and Rangel (2008) and Engle, Ghysels, and Sohn (2013), who applied a mixed frequency
approach (Spline- andMIDAS-GARCH), the research focus has remained on lower than daily frequencymacro-
factors to explain the time-varying behavior of financial volatility. Corradi, Distaso, and Mele (2013) further
investigated the macroeconomic environment contribution to monthly stock returns, volatilities, and volatility
risk-premia, while Conrad and Loch (2015) explained S&P 500 daily conditional variance with quarterly eco-
nomic variables. The principal common finding across the volatility determinants studies is the counter-cyclical
pattern of volatility for several economic activity variables.

Research on the economic drivers of financial volatility lacks evidence on daily macro-factors of the daily or
intra-daily stock index volatility pattern.Motivated by this literature gap, we augment theHEAVYmodel of both
daily and intra-daily volatility with daily macro-variables that proxy the business cycle conditions used in the
existing monthly or quarterly studies of volatility determinants. In line with Conrad and Loch (2015), we proxy
the macroeconomic environment through economic activity, monetary and business conditions, and sentiment
daily variables that could explain European stock index realized variance. Since GDP, industrial production,
unemployment, inflation, consumer sentiment or any available activity, monetary base, and sentiment index is
notmeasured on a daily frequency, we turn to relevant daily variables. The Economic Policy Uncertainty index is
directly related to the business cycle with significant contractive effects on investment and employment (Baker,
Bloom, and Davis 2016). It is used here in place of the activity variables included in all prior studies. We expect
the opposite sign effect from the sign previously observed for economic activity variables since uncertainty is
negatively correlated to activity and higher uncertainty is strongly associated with recessions. The uncertainty
index applied is also considered as an alternative to financial uncertainty (VIX index in Corradi, Distaso, and
Mele 2013), sentiment, and macroeconomic volatility (Conrad and Loch 2015). Daily credit conditions vari-
ables are chosen to account for the business and monetary conditions’ impact on financial volatility, following
Schwert (1989), who uses financial leverage variables, interest rate and corporate bond returns volatility. Lastly,
we use daily commodity price indices motivated by the fact that commodity price increases and oil, in partic-
ular, are often associated with recessions in the macroeconomy (Barsky and Kilian 2004). Therefore, we expect
a significant surge in stock market volatility following a rise in commodity prices, which has been proved to be
harmful for real economic activity.

Our first macro-variable is the news-based Economic Policy Uncertainty Index (EPU), established by Baker,
Bloom, and Davis (2016) and retrieved from http://www.policyuncertainty.com/. The site, maintained by Baker,
Bloom, and Davis, provides daily EPU data for the UK starting from 2001. The EPU index effectively captures
the broad ‘amorphous’ concept of economic uncertainty (Bloom 2014). The 2008 global financial crisis has
brought the previously overlooked notion of economic uncertainty to the frontline of academics’, policymakers’
and practitioners’ interest. We are now witnessing an extensive burgeoning literature having uncertainty as its
principal topic and exploring the widely-recognized countercyclical uncertainty effects on macroeconomic and
financial indicators across the business cycle. In particular, for unique crisis events and long-lasting recession
periods, academics try to scrutinize all possible factors from their arsenal of indicators, which could prove to be
forces behind the poor economic performance. Uncertainty in the agents’ thoughts has been recently verified as
a crucial factor deciphering a substantial part of economic fluctuations. Our motivation and recognition of the
relative merits of the news-based EPU metric over several other uncertainty measures are further discussed in
the analysis of the EPU effects on realized volatility (Section 5).

Moving to the credit market conditions, we use four alternative Bond market global benchmarks: the Merrill
Lynch MOVE 1 month Index (MOVE), the Moody’s AAA and BAA Corporate Bonds Yields (AAA & BAA)
and the spread of the BAA over the AAA yields (BAA_AAA). The MOVE Index is an estimate of the Option
Implied Volatility of US Treasury bonds. It is the Treasury counterpart of the ‘fear’ index (VIX) for S&P 500 and
captures the sovereign credit market stance. Higher sovereign bond volatility denotes higher turbulence in the
credit channel for sovereigns with direct spillovers to financial and non-financial corporations’ credit conditions.
TheMoody’s indices provide daily averages of global triple-A and BAA corporate bond yields (higher yields and
spreads denote higher cost of financing and credit risk pricing for corporations) and are used as alternatives
to the MOVE index for the credit channel. Moreover, the Commodities market conditions are proxied by two

http://www.policyuncertainty.com/
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Figure 6. UK EPU and FTSE 100 Realized Variance.

Figure 7. UK EPU and the Credit market proxies.
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Figure 8. UK EPU and the Commodity market proxies.

alternative global factors: the S&P GSCI Index (GSCI) and the Crude Oil Prices per barrel (WTI). Both capture
the cost of production for firms in the economy, where rising commodity values can lead to production and
investment deterioration due to increased cost effects on economic activity. On the one hand, the S&PGoldman
Sachs Commodity Index is the widely-recognized commodity markets performance benchmark. On the other
hand, crude oil is the most important commodity as an energy source across all economies. The crude oil dollar
prices per barrel (crude stream: West Texas Intermediate - WTI) are used as our alternative macro-regressor
to the GSCI, where, besides oil, most liquid commodities are incorporated. The four bonds and commodities
variables are retrieved fromThomson Reuters Datastream and FRED economic database of the St. Louis Federal
Reserve Bank.

All dailymacro-regressors, except for theMoody’s BAAminus AAA spreads, are log-transformed (see graphs
in Appendix A.2, Figures A3–A9) and included in the realized measure equation where they are proved to be
significant2. In the macro-augmentation of the HEAVY model, we are restricted to using only non-negative
variables with estimated coefficients of positive sign due to the GARCH positivity constraints. Consequently,
we focused our analysis of the macro-financial linkages on the EPU index for uncertainty and the six bonds
and commodities variables, which are characterized by non-negative values only and exert an inflating impact
on realized volatility. Increased uncertainty, bond yields and volatility, and commodity prices, all contribute to
financial volatility heightening, apparent especially during economic downturns. Figures 6–8 clearly show that
higher realized volatility is observed in times of elevated uncertainty, credit market turbulence and commodity
prices boost.

Beyond imposing the GARCH constraints, we initially tested an additional non-negative proxy of the real
estate market (the log-transformed Dow Jones [DJ] REIT index). This proved to be highly significant but we
should exclude it since the negative sign of the relevant coefficient violates our econometric framework con-
straints3. Better performance of the real estate sector is associated with higher REIT’s level mostly in economic
growth periods and is consistently negatively related to financial volatility. Finally, the realized variance receives
sound negative impact from two economic activity indicators with values not bounded to the positive terri-
tory of real numbers and, therefore, have been excluded. We used the Aruoba-Diebold-Scotti (ADS) Business
Conditions Index (Aruoba, Diebold, and Scotti 2009) and the Yield Curve slope, which are among the unique
economic activity indicators available on a daily frequency. The ADS index tracks daily real business conditions
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based on economic data releases and the Yield Curve slope, as calculated by the difference of the 10-year minus
the 3-month Treasury bond yields, has proved to be a powerful predictor of future economic activity (Estrella
and Hardouvelis 1991). Financial volatility receives a significant negative effect from both variables, as expected
since lower ADS and term structure slope values indicate economic worsening associated with higher stock
market volatility. This opens several paths for future research onmacro-financial linkages in the high-frequency
domain to connect the three variables (DJ REIT, ADS, Yield Curve slope), excluded here, with realized variation
measures in the absence of positivity constraints of the econometric framework applied.

4. Estimation results

4.1. The benchmark HEAVYmodel

Building upon the introduction of the GARCH-X process by Engle (2002b) to include realized measures as
exogenous regressors in the conditional variance equation, Han and Kristensen (2014) and Han (2015) stud-
ied the asymptotic properties of this new specification with a fractionally integrated (nonstationary) process
included as covariate. Moreover, Pedersen and Rahbek (2019) developed likelihood-ratio tests on the signifi-
cance of the nonstationary covariate in the above-mentioned model, while Halunga and Orme (2009) provided
some asymmetry and nonlinearity tests. Lastly, Nakatani and Teräsvirta (2009) and Pedersen (2017) focused
on the multivariate case, the so-called extended constant conditional correlation, which allows for volatil-
ity spillovers and they developed inference and testing for the quasi-maximum likelihood estimator (QMLE)
parameters (see also Ling and McAleer 2003 for the asymptotic theory of vector ARMA-GARCH processes).
For the extended HEAVY models, we employ the existing Gaussian quasi-likelihood estimators and multistep-
ahead predictors applied in the APARCH framework (see, for example, He and Teräsvirta 1999; Laurent 2004;
Karanasos and Kim 2006).

Within the HEAVY framework, we first estimate the benchmark formulation as in Shephard and Shep-
pard (2010), that is, without asymmetries, power transformations, and macro-effects, obtaining very similar
results (Table 2). The only unconditional regressor in both equations is the first lag of the RMt . In other words,
the chosen returns equation is a GARCH(1, 0)-X process dropping out the own Arch effect, αrr , from lagged

Table 2. The Benchmark HEAVY model.

Panel A. Stock Returns: HEAVY- r Panel B. Realized Measure: HEAVY- R

(1 − βrL)σ 2
rt = ωr + αrRL(RMt) (1 − βRL)σ 2

Rt = ωR + αRRL(RMt)

βr αrR SBT lnL βR αRR SBT lnL

FTSE 0.64
(0.045)∗∗∗ 0.38

(0.053)∗∗∗ 2.57
[0.01]

−6067.59 0.62
(0.039)∗∗∗ 0.37

(0.041)∗∗∗ 2.68
[0.01]

−5858.93

EU 0.64
(0.046)∗∗∗ 0.45

(0.061)∗∗∗ 3.32
[0.00]

−7205.94 0.57
(0.036)∗∗∗ 0.41

(0.036)∗∗∗ 2.83
[0.00]

−6653.53

DAX 0.63
(0.050)∗∗∗ 0.46

(0.067)∗∗∗ 3.85
[0.00]

−7271.24 0.58
(0.031)∗∗∗ 0.40

(0.031)∗∗∗ 3.10
[0.00]

−6553.32

CAC 0.43
(0.057)∗∗∗ 0.83

(0.092)∗∗∗ 2.31
[0.02]

−7133.23 0.55
(0.035)∗∗∗ 0.43

(0.036)∗∗∗ 2.29
[0.02]

−6257.72

AEX 0.54
(0.056)∗∗∗ 0.75

(0.094)∗∗∗ 2.32
[0.02]

−6797.87 0.53
(0.034)∗∗∗ 0.45

(0.036)∗∗∗ 2.90
[0.00]

−5780.19

BELL 0.46
(0.057)∗∗∗ 0.86

(0.102)∗∗∗ 2.41
[0.02]

−6410.59 0.54
(0.032)∗∗∗ 0.45

(0.034)∗∗∗ 2.50
[0.01]

−5320.22

IBEX 0.49
(0.082)∗∗∗ 0.71

(0.128)∗∗∗ 1.69
[0.09]

−7347.24 0.54
(0.041)∗∗∗ 0.45

(0.043)∗∗∗ 2.01
[0.04]

−6531.19

SSMI 0.47
(0.062)∗∗∗ 0.87

(0.112)∗∗∗ 2.09
[0.04]

−6133.67 0.47
(0.053)∗∗∗ 0.52

(0.062)∗∗∗ 2.88
[0.00]

−5108.27

OMXC 0.52
(0.121)∗∗∗ 0.57

(0.156)∗∗∗ 2.67
[0.01]

−5085.39 0.66
(0.204)∗∗∗ 0.35

(0.199)∗
2.99
[0.00]

−4547.20

OMXS 0.39
(0.100)∗∗∗ 1.11

(0.218)∗∗∗ 3.57
[0.00]

−4967.65 0.52
(0.085)∗∗∗ 0.51

(0.107)∗∗∗ 2.69
[0.01]

−3899.14

OSE 0.75
(0.040)∗∗∗ 0.36

(0.058)∗∗∗ 3.20
[0.00]

−6694.12 0.65
(0.047)∗∗∗ 0.33

(0.046)∗∗∗ 2.49
[0.02]

−5914.80

Notes: The numbers in parentheses are robust standard errors. ∗∗∗ , ∗∗ , ∗ denote significance at the 0.01,
0.05, 0.10 level respectively. SBT denotes the Sign Bias test of Engle and Ng (1993). The numbers in square
brackets are p-values. lnL denotes the log-likelihood value for each specification.
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squared returns since it becomes insignificant when we add the cross effect of the lagged realized measure as
regressor, with a Heavy coefficient, αrR, high in value and significance across all indices. Themomentum param-
eter, βr , is estimated around 0.39 to 0.75. For the SSR realized variance, the best-chosen model is the GARCH(1,
1) without the cross effect from lagged squared returns. The Heavy term, αRR, is estimated between 0.33 and
0.52 and the momentum, βR, is around 0.47 to 0.66. The benchmark HEAVY system of equations chosen (three
alternative GARCHmodels are tested for each dependent variable with order: (1, 1), (1, 0)-X, and the most gen-
eral one, that is, (1, 1)-X) is the same as in Shephard and Sheppard (2010) with similar parameter values and the
identical conclusion that the realized measure of variation does all the work at moving around the conditional
variances of stock returns and the SSR realized variance. The benchmark’s conclusion, as we show in this study,
does not hold for the more richly parametrizedmacro-augmented asymmetric power model. More importantly,
according to the Sign Bias test (SBT) of Engle and Ng (1993), the asymmetric effect is obviously omitted from
the benchmark specification with the sign coefficient always significant (SBT p-values lower than 0.09).

4.2. Themacro-augmented asymmetric power HEAVYmodel

Moving to our proposed extension of the benchmark HEAVY system, Table 3 presents the estimation results
for the chosen macro-augmented asymmetric power specifications. For both returns and realized variance, we
statistically prefer the double asymmetric power (DAP) specification since both power transformed conditional
variances are significantly affected by own and cross asymmetries.We estimate the power terms separately with a
two-stage procedure, as follows: We, firstly, estimate univariate asymmetric power specifications for the returns
and the realized measure. The Wald tests for the estimated power terms (available upon request) reject the
hypotheses of δi = 1 and δi = 2 in most cases. In the second stage, we use the estimated powers, δr and δR,
from the first step to power transform each series’ conditional variance and incorporate them into the bivari-
ate DAP model. The sequential procedure produces the fixed power term values, which are the same for both
specifications (δr and δR are common for Panels A and B).

For the returns (see Table 3, Panel A), the estimated power, δr, lies between 1.40 and 1.70. TheHeavy asymme-
try parameter, γrR, is significant and around 0.09 (min. value) to 0.18 (max. value). Although αrr is insignificant
and excluded in all cases, the own asymmetry parameter (γrr) is significant with γrr ∈ [0.07, 0.12]. In other
words, the lagged values of both powered variables, that is, the negative signed realizedmeasure and the squared
negative returns, drive the model of the power transformed conditional variance of the returns. Moreover, the
momentum parameter, βr , is estimated to be around 0.86 to 0.90. All eleven indices generated very similar DAP
specifications without macro-effects since we statistically prefer to include the macro-regressors in the realized
measure equation.

Similarly, for the realized measure the most preferred specification is the m-DAP one. The power, δR, is
estimated from 1.00 to 1.40 and is consistently lower than the returns power term (see Table 3, Panel B). Both
Heavy parameters, αRR and γRR, are significant: αRR is around 0.13 (min. value) to 0.27 (max. value), while the
own asymmetry, γRR, is between 0.02 and 0.04. Only in the OMXC case, the own asymmetry parameter, γRR,
is insignificant and, therefore, excluded. Moreover, the cross asymmetry Arch parameter is always significant
with γRr ∈ [0.04, 0.09]. This means that the power transformed conditional variance of R̃Mt is significantly
affected by the lagged values of both powered variables: squared negative returns and realized measure. Further,
the momentum parameter, βR, is estimated to be around 0.64 to 0.77. Table A1 (in Appendix A.1) provides
additional results for the realized measure equation before including the macro-effects. We, firstly, estimated
the DAP extension before resulting in our final chosen model, that is extending it with all three macro-factors
(see also Appendix A.1, Table A2, where we statistically prefer MOVE and WTI for the FTSE according to the
Akaike Information Criterion - AIC).

Lastly, the lagged macro-effects are highly significant with the expected positive sign in all cases. The power
transformed realized variance receives the boosting impact from higher UK EPU levels, φR ∈ [0.01, 0.03], in
line with Pastor and Veronesi (2013), who were the first to associate stock market volatilities with EPU, resulting
in a positive link. The uncertainty effect also confirms the finding of Conrad and Loch (2015), among others, on
the negative effect of consumer confidence (University of Michigan Consumer Sentiment Index), which is the
opposite sentiment to uncertainty and is estimated here with the expected opposite sign, as well. The Norwegian
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Table 3. The m-DAP-HEAVY model.

Panel A. Stock Returns: m-DAP-HEAVY- ra

(1 − βrL)(σ 2
rt)

δr/2 = ωr + γrrst−1L(r2t )
δr/2 + γrRst−1L(RMt)

δR/2

βr γrr γrR δr δR SBT lnL

FTSE 0.87
(0.013)∗∗∗ 0.10

(0.014)∗∗∗ 0.11
(0.019)∗∗∗ 1.50 1.30 0.70

[0.49]
−5746.51

EU 0.88
(0.013)∗∗∗ 0.09

(0.015)∗∗∗ 0.14
(0.027)∗∗∗ 1.50 1.30 1.39

[0.16]
−6620.78

DAX 0.89
(0.013)∗∗∗ 0.07

(0.013)∗∗∗ 0.12
(0.025)∗∗∗ 1.40 1.40 1.02

[0.31]
−6585.29

CAC 0.88
(0.012)∗∗∗ 0.09

(0.013)∗∗∗ 0.15
(0.026)∗∗∗ 1.40 1.10 0.67

[0.50]
−6519.87

AEX 0.89
(0.011)∗∗∗ 0.09

(0.012)∗∗∗ 0.12
(0.022)∗∗∗ 1.40 1.20 1.27

[0.20]
−6277.56

BELL 0.87
(0.013)∗∗∗ 0.11

(0.014)∗∗∗ 0.12
(0.023)∗∗∗ 1.40 1.20 0.48

[0.63]
−6001.13

IBEX 0.88
(0.017)∗∗∗ 0.09

(0.015)∗∗∗ 0.17
(0.049)∗∗∗ 1.70 1.20 0.06

[0.95]
−6959.82

SSMI 0.86
(0.011)∗∗∗ 0.10

(0.014)∗∗∗ 0.18
(0.027)∗∗∗ 1.50 1.20 1.00

[0.32]
−5802.58

OMXC 0.86
(0.017)∗∗∗ 0.09

(0.018)∗∗∗ 0.15
(0.031)∗∗∗ 1.60 1.00 0.11

[0.91]
−4759.62

OMXS 0.87
(0.016)∗∗∗ 0.12

(0.020)∗∗∗ 0.16
(0.035)∗∗∗ 1.60 1.00 0.12

[0.91]
−4672.02

OSE 0.90
(0.014)∗∗∗ 0.10

(0.015)∗∗∗ 0.09
(0.025)∗∗∗ 1.60 1.00 0.59

[0.56]
−6271.82

Panel B. Realized Measure: m-DAP-HEAVY- R
(1 − βRL)(σ 2

Rt)
δR/2 = ωR + (αRR + γRRst−1)L(RMt)

δR/2 + γRrst−1L(r2t )
δr/2 + φREPUt−1 + ζRBOt−1 + ϑRCOt−1

βR αRR γRR γRr φR ζR ϑR δr δR SBT lnL

FTSE 0.77
(0.022)∗∗∗ 0.13

(0.022)∗∗∗ 0.04
(0.014)∗∗∗ 0.09

(0.008)∗∗∗ 0.02
(0.005)∗∗∗ 0.06

(0.011)∗∗∗
MOVE

0.01
(0.006)∗∗

WTI

1.50 1.30 1.04
[0.30]

−5744.36

EU 0.72
(0.025)∗∗∗ 0.17

(0.023)∗∗∗ 0.04
(0.013)∗∗∗ 0.08

(0.007)∗∗∗ 0.01
(0.006)∗∗ 0.07

(0.015)∗∗∗
MOVE

0.02�
(0.009)∗
GSCI

1.50 1.30 1.40
[0.16]

−6509.33

DAX 0.72
(0.023)∗∗∗ 0.20

(0.021)∗∗∗ 0.03
(0.010)∗∗∗ 0.07

(0.007)∗∗∗ 0.01
(0.006)∗

0.06
(0.019)∗∗∗

AAA

0.02�
(0.008)∗∗∗

GSCI

1.40 1.40 0.90
[0.37]

−6460.71

CAC 0.69
(0.023)∗∗∗ 0.21

(0.020)∗∗∗ 0.03
(0.008)∗∗∗ 0.06

(0.005)∗∗∗ 0.02
(0.005)∗∗∗ 0.06

(0.012)∗∗∗
MOVE

0.01
(0.004)∗
WTI

1.40 1.10 0.54
[0.59]

−6110.21

AEX 0.67
(0.024)∗∗∗ 0.22

(0.022)∗∗∗ 0.02
(0.010)∗∗∗ 0.07

(0.006)∗∗∗ 0.01
(0.004)∗∗∗ 0.06

(0.011)∗∗∗
MOVE

0.01�
(0.007)∗
GSCI

1.40 1.20 0.96
[0.34]

−5706.58

BELL 0.65
(0.024)∗∗∗ 0.26

(0.022)∗∗∗ 0.02
(0.009)∗∗ 0.06

(0.006)∗∗∗ 0.02
(0.004)∗∗∗ 0.04

(0.009)∗∗∗
MOVE

1.40 1.20 0.20
[0.84]

−5242.64

IBEX 0.66
(0.027)∗∗∗ 0.26

(0.025)∗∗∗ 0.02
(0.011)∗∗ 0.04

(0.004)∗∗∗ 0.03
(0.007)∗∗∗ 0.03

(0.013)∗∗∗
MOVE

0.02
(0.008)∗∗

WTI

1.70 1.20 0.68
[0.50]

−6441.87

SSMI 0.64
(0.033)∗∗∗ 0.27

(0.031)∗∗∗ 0.02
(0.008)∗∗∗ 0.05

(0.005)∗∗∗ 0.01
(0.003)∗

0.05
(0.010)∗∗∗
MOVE

0.01�
(0.003)∗∗

GSCI

1.50 1.20 0.41
[0.68]

−5073.07

OMXC 0.73
(0.044)∗∗∗ 0.20

(0.033)∗∗∗ 0.04
(0.006)∗∗∗ 0.01

(0.006)∗
0.04

(0.017)∗∗
AAA

1.60 1.00 1.06
[0.29]

−4492.10

OMXS 0.69
(0.040)∗∗∗ 0.20

(0.033)∗∗∗ 0.03
(0.010)∗∗∗ 0.05

(0.005)∗∗∗ 0.01
(0.007)∗∗ 0.15

(0.028)∗∗∗
BAA

0.02�
(0.008)∗∗∗

GSCI

1.60 1.00 0.84
[0.40]

−3732.41

OSE 0.72
(0.022)∗∗∗ 0.17

(0.015)∗∗∗ 0.04
(0.009)∗∗∗ 0.04

(0.004)∗∗∗ 0.03
(0.006)∗∗∗
BAA−AAA

0.02
(0.007)∗∗∗

GSCI

1.60 1.00 0.87
[0.39]

−5813.53

Notes: See Notes in Table 2.� signifies that the Commodity coefficient is not jointly significant with the Bonds parameter.
aThe DAP-HEAVY-r equation for returns is also estimated with the direct Heavy effect from the power transformed realized measure, αrR , instead
of the Heavy asymmetry, γ rR (these results are available upon request).

index volatility is the sole case without direct impact from the UK uncertainty. However, for this index, the EPU
effect on Heavy, Arch, and bond factors is significant (see Section 5, Table 9). Regarding the bond and com-
modity markets, we prefer to use common global proxies for all European indices. Bond market conditions are
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better captured by the MOVE index in most cases except for DAX and OMXC, where we prefer the Moody’s
triple-A yields, OMXS with BAA yields and OSE with the spread between BAA and AAA bonds. Increased US
treasury implied volatility or elevated international corporate bond yields and spreads raise realized volatility
in stock markets (ζR ∈ [0.03, 0.15]), as expected since the turbulence in the credit markets always gives signif-
icant volatility spillover effects to stock markets. Hereby, we confirm, among others, Engle and Rangel (2008),
who estimate a positive effect of short-term government bond interest rate volatility on stock market volatil-
ity through the Spline-GARCH specification. Turning to commodities, the realized measure equations of BELL
and OMXC do not include the direct impact from a significant commodities proxy, while for the remaining
indices we either prefer the GSCI index or the WTI crude oil prices (ϑR ∈ [0.01, 0.02]). In Section 5 (see again
Table 9), we prove that BELL receives the commodity price effect when multiplied by the EPU variable. The
same applies in the cases where the commodities parameters are not jointly significant with bond coefficients.
Section 5, Table 9 includes estimations where commodities are estimated jointly significant with bonds when
considering the EPU effect on either commodities or bonds. Lower commodity prices mean decreased cost of
supplies for firms in the economy, propelling productivity, investment and, more generally, economic growth
and, at the same time, reducing stock market volatilities. Given that increased oil prices are mostly coincident
with recession periods (Barsky and Kilian 2004), the positive link of realized variance and commodity prices,
captured by ϑR, proves the negative association of economic activity with stock market volatility, in accordance
with the existing literature. All prior volatility determinant studies have provided sound evidence on the negative
sign effect of economic activity proxies on stock market volatility (see, for example, the GDP growth coefficients
in Engle and Rangel 2008).

Overall, our results show strong Heavy effects (captured by the γrR, αRR, and γRR parameters), as well as
asymmetric Arch influences (the estimated γrr and γRr are always significant) and macro-impact (measured by
φR, ζR, and ϑR). According to the log-likelihood (lnL) values reported, the log-likelihood is always higher for the
m-DAP specifications compared to the benchmark one, that is without asymmetries, powers, andmacro-effects,
proving the superiority of ourmodel’s in-sample estimation (see also the comparison of the twomodels in terms
of the FTSE standardized residuals graphs inAppendixA.2, Figure A10). The SBT statistics further show that the
asymmetric effect is not omitted any more since the sign coefficients are insignificant with p-values consistently
higher than 0.16.

Froman economic point of view, themacro-effects onEuropean stockmarkets volatility observed through the
m-DAP-HEAVY framework confirm prior studies on the upward volatility trajectory during economic down-
turns. This counter-cyclical behavior has been mainly proved by the negative sign effect of economic activity
leading or coincident indicators on a monthly or quarterly frequency (Engle and Rangel 2008). Turning to
the high-frequency domain of the macro-financial linkages, the monthly activity variables should be replaced
by possible daily proxies of economic activity to be included as explanatory variables in the realized variance
equation. Given the non-negativity restriction, we could not use, among others, the daily term spread, a reli-
able predictor of GDP (Estrella and Hardouvelis 1991) and significant in the monthly context as evidenced
by Conrad and Loch (2015). Based on the rich empirical evidence of the adverse uncertainty effects on eco-
nomic activity (Caggiano, Castelnuovo, and Figueres 2017; Colombo 2013; Jones and Olson 2013), we select the
daily EPU index to associate stock market volatility with a variable directly linked to economic activity contrac-
tive forces. The positive sign consistently estimated here across all specifications for the UK EPU variable is in
accordance with prior findings on the positive sign given to macroeconomic uncertainty (Schwert 1989) and
unemployment, and the negative sign of the real GDP, industrial production, and consumer sentiment growth
(Conrad and Loch 2015). All forces associated with a positive real economic impact exert a negative influence
on stock market fluctuations, while the depressive forces exacerbate volatility and are estimated with a positive
sign irrespective of the specification chosen by the different scholars. Therefore, it is economically plausible for
the daily economic uncertainty to drive financial volatility higher, at the same time weakening the prevailing
macroeconomic conditions.

Against this backdrop, we also selected the sovereign bond yield volatility (or, alternately, the corporate bond
yield level and default spread) to identify the credit channel effect on stock markets. Increased volatility in the
sovereign bond market (Engle and Rangel 2008) or corporate debt yields and default spreads are reasonably
correlated with macroeconomic turbulence since they increase the cost of financing for firms and investors



1162 M. KARANASOS AND S. YFANTI

and, consequently, reduce activity. Accordingly, the global bond factor coefficients are consistently estimated
with positive signs across all stock market volatility models (see also Asgharian, Hou, and Javed 2013). Finally,
the commodity price index or, alternately, the oil price are included as a third volatility determinant, which
is found positive and highly significant in most cases. Motivated by the widespread discussion and empirical
evidence about the commodity price effects on the macroeconomy in Kilian’s research works (see, for example,
Barsky and Kilian 2004), we complement the volatility macro-determinants literature by enriching the set of
significant macro-variables for the volatility pattern with commodities and observe the destabilizing impact of
higher daily commodity prices, mostly associated with economic downturns, on stock market realized variance.
Increased commodity cost for firms’ production supplies impairs economic activity and exacerbates equities’
volatility.

Hence, apart from contributing to the realized variance modeling research through the asymmetric, power,
and macro-augmentation of the benchmark HEAVY specification, we also contribute to the economic sources
of volatility by exploring the macro-financial linkages in the high-frequency domain with daily macro-proxies.
All three daily economic variables that exacerbate stock market volatility are associated with weak economic
conditions: higher economic uncertainty, tighter credit conditions, and increased commodity prices. Moreover,
we bridge the macro-finance literature with the high-frequency volatility studies by using, for the first time, the
sole economic uncertainty index computed daily. The daily UK EPU is applied in the present European study to
reveal the uncertainty spillovers from theUK across the whole continent’s stockmarkets. TheUK-led spillover is
crucial nowadays given its direct connection to the Brexit fears which trigger agents’ uncertainty feelings spread
over the whole union.

4.3. Forecasting performance

Following the estimation of them-DAP extension to theHEAVY framework of equations, we performmultistep-
ahead out-of-sample forecasting in order to compare the forecasting accuracy of the enriched specification
proposed in this study with the benchmark model introduced by Shephard and Sheppard (2010). We compute
1-, 5-, 10-, and 20-step-ahead forecasted (power transformed) conditional variances for the benchmark model,
theDAP and itsmacro-augmented extension.We apply a rollingwindow in-sample estimation using 3000 obser-
vations (the initial in-sample estimation period for FTSE spans from 2/1/2001 until 28/11/2012). Each model
is re-estimated daily based on the 3000-day rolling sample so that the out-of-sample forecasts of each specifi-
cation calculated for FTSE are as follows: 1581 one-step-ahead, 1577 five-step-ahead, 1572 ten-step-ahead, and
1562 twenty-step-ahead forecasted variances. We then use the time series of the forecasted values to compute
the Mean Square Error (MSE) and the QLIKE Loss Function (Patton 2011) of each point forecast compared to
the respective actual value. For each formulation and each forecast horizon, we calculate the time series average
MSE andQLIKE to build the ratio of the forecast losses for each extendedHEAVY specification to the loss of the
benchmark one. A ratio lower than the unity indicates the forecasting superiority of the proposedmodels relative
to the benchmark one. The lowest ratio means lowest forecast losses, that is the model with the best forecasting
performance. The implications of volatility prediction concern traders, investors, risk managers, and regulators.
Traders are mostly involved in short-term forecasting while regulators need longer-term predictions. Investors
and risk managers can have both short- and long-term interests.

The results, presented in Table 4 for FTSE (similar forecasting results for the other ten indices are available
upon request), clearly show the preference for our macro-augmented asymmetric power extensions over the
benchmark models across all time horizons. For the returns equations (see Table 4, Panel A), the m-DAP for-
mulation dominates the alternative benchmark one with the lowest MSE and QLIKE in all forecasting periods.
In the realized measure equation (see Table 4, Panel B), we get the best forecasting performance in the m-DAP
specification either with all three macro-factors (5-,10-, and 20-day periods) or the EPU regressor only without
Bonds and Commodities (1-day horizon). Overall, the more general extension proposed in our study performs
significantly better than the benchmark one in the short- and long-term horizons. Considering the stepwise esti-
mation of the final m-DAP model, we evidence, firstly, the significant improvement in forecasting results with
the double asymmetric power over the benchmark specification, and, secondly, its further enhancement with
macro-effects. Investors, traders and risk managers can benefit from the superior short-term macro-informed
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Table 4. Mean Square Error (MSE) and QLIKE of m-step-ahead out-of-sample forecasts for FTSE as a Ratio of the
benchmark model.

MSE QLIKE

Specifications↓m-steps→ 1 5 10 20 1 5 10 20

Panel A: Stock Returns (HEAVY-r)
Benchmark 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
m-DAP 0.777 0.793 0.824 0.902 0.751 0.782 0.816 0.929

Panel B: Realized Measure (HEAVY-R)
Benchmark 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DAP 0.851 0.896 0.933 0.967 0.762 0.801 0.794 0.831
m-DAP (EPU only) 0.813 0.877 0.901 0.915 0.719 0.750 0.787 0.766
m-DAP ⊕ 0.836 0.854 0.873 0.902 0.747 0.738 0.781 0.759

Notes: Bold numbers indicate minimum values across the different specifications.
⊕ The m-DAP-HEAVY-R specification includes all three macro-factors: EPU, Bonds & Commodities.

forecasts for one up to ten days, while policymakers should focus on the longer-term forecasting performance
to predict ‘safely’ the one-month financial volatility given the significant macro-determinants.

4.4. Structural breaks

Following the analysis of the superiority of our macro-augmented DAP extension for the HEAVY system, in
this Section we investigate the impact of structural changes (detected in the two power transformed time series
used as dependent variables) on the Heavy, Arch and Macro estimated parameters. The time-varying behavior
of these parameters can be significant, specifically around a financial crisis break, indicative of the crisis effects
on the volatility pattern. The structural breaks of the two volatility series are identified, focusing mainly on the
recent global financial crisis, and we study their impact on the HEAVY framework. The methodology in Bai
and Perron (1998, 2003a, 2003b) is employed to test for structural breaks. They address the problem of testing
for multiple structural changes in a least squares context and under very general conditions on the data and
the errors. In addition to testing for the presence of breaks, these statistics identify the number and location
of multiple breaks. So, we identify the structural breaks in the two powered series (power transformations of
squared returns and realized measure) with the Bai and Perron methodology (see Table 5 and Figures 9–10 for
FTSE). We use the breaks identified in order to build the slope dummies for the various parameters. One break
date for the recent financial crisis of 2007/08 is detected, so we can focus on the crisis effect. We also detect one
break date before and one after the crisis.

We focus on the crisis period effect and present the estimation results for FTSE in Table 6 (similar results for
the other ten indices available upon request).We choose to use the break dates of the power transformed realized
measure series: (1) 01/10/2003: pre-crisis break, (2) 24/07/2007: crisis break and (3) 21/07/2010: post-crisis
break. The crisis dummy variable multiplied by the respective Heavy, Arch and Macro variables (to construct
the slope dummies) is defined as follows: D2,t = 1, if T(2) ≤ t < T(3) and D2,t = 0, if t � T(3) and t < T(2).
We, firstly, apply the slope dummies in the Heavy and Arch coefficients of the m-DAP-HEAVY-r equation (see
Table 6, Panel A). In the returns equation, we estimate two different specifications with the crisis break: the
first (I) with the slope dummy on the own asymmetry (Arch) parameter, γrr , and the second (II) with the slope
dummy on the cross asymmetry (Heavy) parameter, γrR. Both asymmetries’ coefficients increase with the crisis
break. Regarding the realized measure equation (see Table 6, Panel B), the Heavy impact, as captured by the

Table 5. The break dates for FTSE.

1st Break 2nd Break 3rd Break

r 03/10/2003 23/07/2007 27/05/2010
R 01/10/2003 24/07/2007 21/07/2010

Notes: Bai & Perron breaks identification: Results selected from the repartition procedure for 1%
significance level with 5maximumnumber of breaks and 0.15 trimming parameter. Dates in bold
indicate that the corresponding dummy coefficient is used in the HEAVY models.



1164 M. KARANASOS AND S. YFANTI

Figure 9. Power transformed FTSE Squared Returns with breaks.

Figure 10. Power transformed FTSE Realized Variance with breaks.

Heavy parameter αRR, and the own asymmetry γRR, and the Arch asymmetric influence (captured by γRr) all
rise with the crisis break (Panel B specifications: I, II, III). Following the DAPmodel with crisis structural break
on the Heavy and Arch coefficients, we further focus on the macro-augmented DAP equation of the realized
variance, in order to estimate the slope dummies on the Macro parameters (Panel B specifications: IV, V, V
I). The first macro-augmented specification (IV) presents the equation with the EPU regressor only, where we
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Table 6. The m-DAP-HEAVY model for FTSE with the crisis period break.

Panel A. Stock Returns: m-DAP-HEAVY- r
(1 − βrL)(σ 2

rt)
δr/2 = ωr + (γrr + γ

(2)
rr D2,t−1)st−1L(r2t )

δr/2

+(γrR + γ
(2)
rR D2,t−1)st−1L(RMt)

δR/2

I βr γrr γ
(2)
rr γrR

0.87
(0.013)∗∗∗ 0.10

(0.013)∗∗∗ 0.04
(0.014)∗∗∗ 0.10

(0.019)∗∗∗

II βr γrr γrR γ
(2)
rR

0.87
(0.013)∗∗∗ 0.11

(0.014)∗∗∗ 0.10
(0.019)∗∗∗ 0.04

(0.013)∗∗∗

Panel B. Realized Measure: m-DAP-HEAVY- Rwith EPU, Bonds & Commodities
(1 − βRL)(σ 2

Rt)
δR/2 = ωR + [αRR + α

(2)
RR D2,t−1

+(γRR + γ
(2)
RR D2,t−1)st−1]L(RMt)

δR/2

+(γRr + γ
(2)
Rr D2,t−1)st−1L(r2t )

δr/2

+(φR + φ
(2)
R D2,t−1)EPUt−1 + (ζR + ζ

(2)
R D2,t−1)BOt−1

+(ϑR + ϑ
(2)
R D2,t−1)COt−1

I βR αRR α
(2)
RR γRR γRr

0.77
(0.021)∗∗∗ 0.13

(0.023)∗∗∗ 0.02
(0.004)∗∗∗ 0.04

(0.015)∗∗∗ 0.08
(0.008)∗∗∗

II βR αRR γRR γ
(2)
RR γRr

0.78
(0.021)∗∗∗ 0.13

(0.023)∗∗∗ 0.04
(0.0174)∗∗∗ 0.03

(0.008)∗∗∗ 0.08
(0.008)∗∗∗

III βR αRR γRR γRr γ
(2)
Rr

0.77
(0.021)∗∗∗ 0.13

(0.023)∗∗∗ 0.04
(0.015)∗∗∗ 0.08

(0.008)∗∗∗ 0.03
(0.009)∗∗∗

IV βR αRR γRR γRr φR φ
(2)
R

0.78
(0.022)∗∗∗ 0.12

(0.023)∗∗∗ 0.05
(0.015)∗∗∗ 0.09

(0.008)∗∗∗ 0.01
(0.004)∗

0.01
(0.002)∗∗∗

V βR αRR γRR γRr ζR ζ
(2)
R

0.77
(0.022)∗∗∗ 0.12

(0.024)∗∗∗ 0.04
(0.015)∗∗∗ 0.09

(0.008)∗∗∗ 0.02
(0.009)∗∗∗
MOVE

0.01
(0.002)∗∗∗
MOVE

V I βR αRR γRR γRr ϑR ϑ
(2)
R

0.78
(0.021)∗∗∗ 0.12

(0.023)∗∗∗ 0.05
(0.015)∗∗∗ 0.09

(0.008)∗∗∗ 0.01
(0.005)∗
GSCI

0.01
(0.001)∗∗∗

GSCI

Powers δi
δr δR
1.50 1.30

Notes: See notes in Table 2.
Superscripts in parentheses indicate the crisis break date.

observe the positive increment on the EPU coefficient from the crisis break. Lastly, the augmented equations
with Bonds (V) and Commodities (V I) illustrate once more the positive crisis effect on each macro-factor.

Overall, we evidence consistently the same signs of the dummies’ coefficients across all specifications with
Heavy, Arch, and Macro parameters. The crisis break dummies always increase the relevant coefficients,
magnifying themacro-effects that destabilize the stockmarkets during the crisis. The destabilizing impact of the
crisis stance on financial volatility either directly through the Heavy and Arch effects or through the uncertainty,
credit market and commodity prices influences should raise the concern of policymakers about the imminent
and highly probable Brexit harm to the whole European financial system.

5. The uncertainty effect on realized volatility

Following the augmentation of the benchmark HEAVY system with asymmetries, power transformations, and
macroeconomic effects, we investigate the drastic influence of UK uncertainty on European financial markets
volatility. We, first, review the uncertainty measurement approaches in order to discuss the relative merits of
the Economic Policy Uncertainty index and briefly present the relevant empirical evidence. Lastly, and most
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importantly, we prove the significant UK EPU effect on the Heavy, Arch, Bonds, and Commodities impact on
the European stock markets realized variance.

5.1. Uncertaintymeasurement and the EPU index

Since economic uncertainty constitutes one of the most debated factors to explain the recent crisis with the
ensuing persistent slowdown and the unexpectedly sluggish recovery, eminent scholars responded to the chal-
lenge of quantifying such an unobservable variable in order to test its influence on economic activity. They
employed a wide variety of econometric forecasting techniques and somemore novel text-mining andmachine-
learning methods on time series data of economic variables, survey data, news stories, Google search volumes
or even internet-clicks data to compute tangible measures of uncertainty. Beyond the acknowledged consensus
on the use of financial markets implied volatility (e.g. VIX) as a reliable proxy of uncertainty in macro-financial
modeling (Bloom 2009; Bekaert, Hoerova, and Lo Duca 2013), another rather traditional approach to gauge
uncertainty has been the second moment of the time series of a macroeconomic or financial indicator (e.g.
GARCH conditional variance in Fountas and Karanasos 2007). More recently, under the pure econometrics
approach, academics have addressed the quantification problem by formalizing economic uncertainty mea-
sures with sophisticated large-scale structural models on macroeconomic and financial datasets (Mumtaz and
Theodoridis 2018; Jurado, Ludvigson, and Ng 2015; Carriero, Clark, and Marcellino 2018). A further strand
of the well-established uncertainty literature has produced survey-based uncertainty measures, using among
others the Surveys of Professional Forecasters (Scotti 2016; Rossi and Sekhposyan 2015; Jo and Sekkel 2017).

In light of the seminal paper of Baker, Bloom, and Davis (2016), a considerable number of studies have devel-
oped news-based uncertaintymeasures, which are gaining enormous popularity. Baker, Bloom, andDavis (2016)
were among the first scholars that applied textual analysis to construct the Economic PolicyUncertainty Index by
calculating the frequency of references to uncertainty concerning economic policy in leading newspapers (count
of keywords like uncertainty and economic policy). The EPU Index is computed nowadays for many coun-
tries (see the indices publicly available by the majority of EPU authors on http://www.policyuncertainty.com/)
on a monthly frequency (daily EPUs are constructed only for US and UK) and extended to several categorical
subindices (i.e. uncertainty on fiscal,monetary, trade policy, etc.). Themotivation behind the news-based indica-
tors lies in the consideration that the press is a reliable and timelymirror of the agents’ expectations and economic
sentiment. Commonknowledge suggests that newspapers should outline the economic reality according to read-
ers’ information demand, interests and expectations in order to maintain their audience. Baker, Bloom, and
Davis (2016) opened up a new strand of research with a growing body of bibliography which markedly focused
on textual search and machine learning methods to construct similar news-based Policy Uncertainty indices
with the mounting interest of many scholars in improving such methodologies (Brogaard and Detzel 2015;
Larsen and Thorsrud 2018). In line with the news-based uncertainty measures extracted through text mining
algorithms on newspaper articles, there are twomore approaches in this bibliography part: the sophisticated and
ready-to-use news indicators provided by news agencies like Bloomberg and Thomson Reuters (see, for exam-
ple, Caporale, Spagnolo, and Spagnolo 2018) and the internet search engines volume metrics (Google trends in
Castelnuovo and Tran 2017, Wikipedia searches in Vlastakis and Markellos 2012, and Bitly click data in Bena-
mar, Foucault, andVega 2018). Several uncertainty indices are derived from internet search intensity of keywords
related to uncertainty or to an economic term, event or variable, indicating that such terms attract the attention
of the general public due to uncertainty.

Within the long stream of literature on news-based indices, the key conceptual difference between the two
main approaches, the news coverage, and the internet search engines or clicks, lies in the information perspec-
tive they employ. The former is applied to the information supply side, while the latter is on the demand side.
We strongly believe that the supply side is more reliable for quantifying uncertainty. On the one hand, it is com-
monplace that newspapers as information providers should reflect the general mood in order to attract and
maintain their audience. Thus, the media content is of immense value for gauging uncertainty. On the other
hand, the demand side, directly connected to economic psychology, is measured by internet queries and news
clicks intensity. Thus, it may create bias on the real uncertainty level since the clicks volume also depends on
people’s free time and internet access, apart from implying attention or information search as a response to

http://www.policyuncertainty.com/
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uncertainty. Consistent with our view that news-based indices constructed on the information supply side are
more appealing, in this paper, we focus on Economic Policy Uncertainty. The intuition behind our preference
to use the novel news-based EPU index is straightforward given the numerous attractive features, suggestive of
its usefulness. The merits of the EPU index are summarized as follows: (i) the insights derived from real-time
news coverage, (ii) the timeliness of news arrival with their sound signaling potential, (iii) the availability for
major economies, (iv) the policy-sensitive feature included in the uncertainty measurement, and (v) the consis-
tency as substantiated in the ample empirical support of its explanatory and predictive power inmacro-financial
models. Given the facts that (i) EPU relies on daily news, (ii) political news dominates the markets, and (iii) the
construction of the index includes policy-related concerns apart from economic terms alone, we regard it as a
number that fits all, bothmacroeconomic and financial reality, in a timelymanner. Themodel- and survey-based
uncertainty proxies cannot be as up-to-date as EPU due to their reliance on the history of economic variables
or the non-real-time survey responses by forecasters, whose disagreement or forecast error dispersion do not
necessarily suggest the omnipresence of uncertainty in the economy. Newspapers can be thought of as the best
illustration of the general public’s (households, corporations, investors and governments) feeling in terms of
uncertainty, although they are occasionally criticized in relation to their objectivity, that they may create news
instead of simply transmitting it. In this case, the use of wide-ranging sources to construct the EPU indices
eliminates the possibility of one or more newspapers attempting to inflate or conceal the ubiquitous uncertainty.

5.2. Economic policy uncertainty and realized volatility

It is important to note here that news textual analysis is used broadly in various scientific fields to quantify
societal trends and public opinion. Nowadays, this novel strategy has inevitably come to the aid of economic
science for measuring variables not directly observable, such as uncertainty, leading to the lengthy catalogue
of the renowned EPU indices. These indices have gained remarkable popularity in numerous applications in
economics and finance. Interestingly, they have recently started showing up even in media reports and invest-
ment recommendations. A voluminous literature has mushroomed over three axes of research: connecting EPU
with macro-aggregates, microeconomic data, and financial variables. The large bulk of EPU literature inves-
tigates the explanatory or the predictive power of EPU on business cycles (with the leading macro-variables
included: unemployment in Caggiano, Castelnuovo, and Figueres 2017, output and inflation in Colombo 2013;
Jones and Olson 2013; Karaman and Yildirim-Karaman 2019, economic development in Scheffel 2016, mone-
tary dynamics in Aastveit, Natvik, and Sola 2017; Tarassow 2019, yield curve slope in Connolly, Dubofsky, and
Stivers 2018, foreign exchange rates in Kido 2016, bank credit and bailouts in Bordo, Duca, and Koch 2016;
Caliendo, Guo, and Smith 2018), on asset prices, returns, volatilities and correlations (equities in Pastor and
Veronesi 2012; Kelly, Pastor, and Veronesi 2016; Dakhlaoui and Aloui 2016, bonds in Bernal, Gnabo, and
Guilmin 2016, stock-bond correlation in Li, Zhang, andGao 2015, commodities inAndreasson et al. 2016; Bakas
and Triantafyllou 2019, real estate in Christou, Gupta, andHassapis 2017, sovereign credit ratings in Boumparis,
Milas, and Panagiotidis 2017, CDS spreads inWisniewski and Lambe 2015, cryptocurrencies in Fang et al. 2019),
and at the micro-level on corporate accounting numbers (Gulen and Ion 2015; Pham 2019; Zhong et al. 2019),
firm and household decisions (Nagar, Schoenfeld, andWellman 2018; Ben-David et al. 2018). Granger causality
tests, Structural VARs, Diebold-Yilmaz (DY) dynamic interconnectedness (Diebold and Yilmaz 2009), Quantile
regressions, GARCHmodels withMIDAS specifications inmany cases, when variables of mixed frequencies are
involved, andwithDynamic Conditional Correlations (Engle 2002a), when the dynamic nature of correlations is
considered, are among the most commonmodeling approaches adopted in the EPU empirical evidence studies.

Despite the substantial advances in the EPU research, proving the adverse EPU impact on economic activity
and its contractive effect on financial variables and the functioning of the financial system, the literature on the
realized volatility dynamics of high-frequency financial variables associatedwith uncertainty is still in its infancy.
Reviewing the few commendable attempts to explain the behavior of stock market volatility with EPU, we can
trace back this link to Pastor andVeronesi (2013), whowere the first to connect stockmarkets withmonthly EPU
using simple OLS regressions of monthly stock returns, volatilities and correlations (unconditional) on the EPU
index, whose coefficient sign was consistently positive for correlations and volatilities and negative for returns.
Antonakakis, Chatziantoniou, and Filis (2013) further compute the Dynamic Conditional Correlations between
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EPU, S&P 500 Stock Index returns and implied volatility (VIX) pairwise on amonthly frequency. The EPU-VIX
correlation is positive and the EPU-returns negative, as expected, since elevated uncertainty depresses stockmar-
ket performance and goes alongside higher stock market volatility. More recently, Fang et al. (2018) have related
daily gold futures volatility with the monthly Global EPU index through the GARCH-MIDAS framework. They
evidence the strong positive effect of uncertainty on gold volatility and its power in forecasting the monthly
realized volatility of gold futures. Finally, Cho, Han, and Lee (2018) highlight the fact that high exchange rate
volatility is linked with elevated EPU leading to carry trade losses.

Despite the rapidly growing EPU literature, it appears that the empirical work on the realized volatility
dynamics driven by EPU is limited, with evidence still scant. Consequently, the present study fills a notable gap
in the extant EPU literature. We elucidate whether EPU exerts considerable influence on the HEAVY volatility
modeling framework and on specific parameters of the macro-augmented asymmetric power specification. Our
work differs from the existing literature in the use of the daily EPU index as a daily realized volatility determinant,
with major implications for macro-informed trading in financial markets and policymakers’ financial stability
concerns and systemic risk oversight. Obviously, the particular EPU-volatility link has not yet been assessed.

Against this backdrop, we have already highlighted the direct positive effect, in line with Pastor and
Veronesi (2013), and forecasting power of daily EPU on realized volatility within the m-DAP-HEAVY frame-
work in Section 4. In this Section, we first investigate the UK EPU effect on the benchmark realized volatility
equation enriched with the lagged bonds and commodities variables. Table 7 presents the macro-augmented
benchmark equation of FTSE with the EPU effect on the Heavy coefficient, bonds, and commodities. The
equation is estimated using ten restricted forms to examine all combinations of jointly significant macro-factors
and each EPU effect separately with the following three interaction terms: (i) α

epu
RR is the parameter of the lagged

EPU multiplied with the lagged realized variance, capturing the EPU effect on the Heavy coefficient (αRR), (ii)
ζ
epu
R and (iii) ϑ

epu
R measure the EPU effect on the bonds’ and commodities’ proxies, respectively.

All interaction terms are estimated with highly significant positive signed coefficients. Intriguingly, within
the macro-enriched benchmark specification, we prove that higher uncertainty means a stronger effect of credit
(specifications: (5), (8), (9) and (10)) and commodity (specifications: (6) and (7)) market conditions on the
realized measure. Since it is widely evidenced that higher uncertainty is associated with economic worsening,
we further deduce the link of tighter credit conditions and elevated commodity prices during the business cycle’s
downturns with higher financial volatility heavily affected by the uncertainty channel. It is also remarkable that a
significant part of the realizedmeasure arch effect, theHeavy coefficient (αRR ∈ [0.17, 0.23]), is explained byEPU
with α

epu
RR estimated between 0.06 and 0.09 (specifications: (1)–(4)). Lastly, EPU partly absorbs themacro-effects

from bonds and commodities, with parameter values ζ
epu
R ∈ [0.02, 0.04] and ϑ

epu
R equal to 0.01, respectively.We

also observe that although the commodities effect (ϑR) in the benchmark model is not significant, when it is
multiplied by EPU (ϑepu

R ) it becomes highly significant jointly with theMOVE index (specifications: (6) and (7)).

Table 7. The Benchmark HEAVY-R equation for FTSE with the EPU effect on Heavy, Bonds and Commodities parameters.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(1 − βRL)σ 2
Rt = ωR + (αRR + α

epu
RR EPUt−1)L(RMt) + (ζR + ζ

epu
R EPUt−1)BOt−1 + (ϑR + ϑ

epu
R EPUt−1)COt−1

βR 0.61
(0.041)∗∗∗ 0.60

(0.042)∗∗∗ 0.60
(0.041)∗∗∗ 0.58

(0.043)∗∗∗ 0.60
(0.042)∗∗∗ 0.60

(0.041)∗∗∗ 0.61
(0.041)∗∗∗ 0.61

(0.040)∗∗∗ 0.61
(0.040)∗∗∗ 0.59

(0.043)∗∗∗

αRR 0.23
(0.083)∗∗∗ 0.19

(0.088)∗∗ 0.17
(0.094)∗

0.21
(0.084)∗∗∗ 0.37

(0.041)∗∗∗ 0.37
(0.041)∗∗∗ 0.37

(0.041)∗∗∗ 0.37
(0.042)∗∗∗ 0.37

(0.042)∗∗∗ 0.37
(0.042)∗∗∗

α
epu
RR 0.06

(0.038)∗
0.08

(0.040)∗∗ 0.09
(0.042)∗∗ 0.07

(0.038)∗

ζR 0.06
(0.028)∗∗
MOVE

0.08
(0.041)∗
BAA

0.06
(0.018)∗∗∗
BAA−AAA

0.04
(0.024)◦
MOVE

0.08
(0.032)∗∗∗
MOVE

0.06
(0.027)∗∗
MOVE

ζ
epu
R 0.02

(0.006)∗∗∗
MOVE

0.03
(0.017)∗
AAA

0.04
(0.017)∗∗∗

BAA

0.02
(0.007)∗∗∗
BAA−AAA

ϑR
ϑ
epu
R 0.01

(0.005)∗∗∗
WTI

0.01
(0.004)∗∗

GSCI

Notes: See notes in Table 2. Superscripts indicate the EPU effect on the respective parameter. ° denotes marginal significance at the 0.15
level (ζR in specification (5)).
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Table 8. The m-DAP-HEAVY-R equation for FTSE with the EPU effect on Heavy, Arch, Bonds and Commodities parameters.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(1 − βRL)(σ 2
Rt)

δR/2 = ωR + [αRR + α
epu
RR EPUt−1 + (γRR + γ

epu
RR EPUt−1)st−1]L(RMt)

δR/2

+(γRr + γ
epu
Rr EPUt−1)st−1L(r2t )

δr/2 + (ζR + ζ
epu
R EPUt−1)BOt−1 + (ϑR + ϑ

epu
R EPUt−1)COt−1

βR 0.76
(0.023)∗∗∗ 0.77

(0.021)∗∗∗ 0.77
(0.020)∗∗∗ 0.77

(0.020)∗∗∗ 0.77
(0.022)∗∗∗ 0.77

(0.021)∗∗∗ 0.77
(0.021)∗∗∗ 0.77

(0.021)∗∗∗ 0.77
(0.021)∗∗∗ 0.76

(0.021)∗∗∗

αRR 0.05
(0.022)∗∗ 0.13

(0.023)∗∗∗ 0.13
(0.022)∗∗∗ 0.13

(0.021)∗∗∗ 0.13
(0.022)∗∗∗ 0.13

(0.022)∗∗∗ 0.13
(0.022)∗∗∗ 0.13

(0.022)∗∗∗ 0.13
(0.023)∗∗∗ 0.12

(0.021)∗∗∗

α
epu
RR 0.03

(0.012)∗∗∗

γRR 0.04
(0.014)∗∗∗ 0.04

(0.015)∗∗∗ 0.04
(0.014)∗∗∗ 0.04

(0.015)∗∗∗ 0.04
(0.014)∗∗∗ 0.04

(0.014)∗∗∗ 0.04
(0.015)∗∗∗ 0.04

(0.014)∗∗∗

γ
epu
RR 0.02

(0.006)∗∗∗ 0.02
(0.005)∗∗∗

γRr 0.09
(0.008)∗∗∗ 0.08

(0.008)∗∗∗ 0.09
(0.008)∗∗∗ 0.09

(0.008)∗∗∗ 0.09
(0.008)∗∗∗ 0.08

(0.008)∗∗∗ 0.09
(0.008)∗∗∗ 0.09

(0.008)∗∗∗

γ
epu
Rr 0.04

(0.003)∗∗∗ 0.04
(0.003)∗∗∗

ζR 0.05
(0.011)∗∗∗
MOVE

0.04
(0.011)∗∗∗
MOVE

0.05
(0.011)∗∗∗
MOVE

0.05
(0.011)∗∗∗
MOVE

0.03
(0.011)∗∗∗
MOVE

0.05
(0.011)∗∗∗
MOVE

0.05
(0.010)∗∗∗
MOVE

0.04
(0.015)∗∗∗

AAA

0.07
(0.019)∗∗∗

BAA

0.03
(0.006)∗∗∗
BAA−AAA

ζ
epu
R 0.01

(0.003)∗∗∗
MOVE

ϑR 0.01
(0.006)∗
WTI

0.01
(0.006)∗∗

WTI

0.01
(0.006)∗∗

WTI

0.01
(0.006)∗∗

WTI

0.01
(0.006)∗∗

WTI
ϑ
epu
R 0.01

(0.002)∗∗∗
WTI

0.01
(0.001)∗∗∗

GSCI

0.01
(0.002)∗∗∗

WTI

0.01
(0.002)∗∗∗

WTI

0.004
(0.001)∗∗∗

GSCI
δr 1.50
δR 1.30

Notes: See notes in Table 2. Superscripts indicate the EPU effect on the respective parameter.

After proving the EPU effect on the benchmark specification’s parameters, we proceed with the DAP exten-
sion. Table 8 reports the alternative restricted forms for FTSE with bonds, commodities and five interaction
terms of EPU with the two Heavy and one Arch coefficients and the other two Macro parameters. The inter-
action terms are all positive, signifying the amplifying EPU impact on each parameter. Heavy effects and cross
Arch asymmetries receive a considerable increasing influence from higher uncertainty. Consistently with the
macro-augmented benchmark model, the macro-effects are also significantly inflated with elevated uncer-
tainty levels. Within the uncertainty literature, the link between credit conditions tightening and uncertainty
has recently been investigated by Alessandri and Mumtaz (2019), who associate the rising financing costs
for firms with credit markets uncertainty, while the commodities-uncertainty relation is widely explored by
Antonakakis, Chatziantoniou, and Filis (2014), Aloui, Gupta, and Miller (2016) and Fang et al. (2018) among
others. Most notably, Antonakakis, Chatziantoniou, and Filis (2017) focus on the oil prices-stockmarket volatil-
ity link. According to our review of the flourishing research on uncertainty effects, academics have not yet
covered the EPU, credit and commodities macro-effects on intra-daily financial volatility and the EPU ampli-
fying role on the credit and production cost channel impact, which is plainly visible here through the HEAVY
framework.

The UK uncertainty effect is clear not only in the local stockmarket (FTSE 100) but across all European stock
indices considered in this study, as well. Central, Southern, and Northern European and Scandinavian financial
markets are destabilized by higher policy uncertainty in the Anglo-Saxon economy directly and indirectly. The
direct effect onEurope is already evidenced through theφR coefficient of them-DAPequation (Section 4, Table 3,
Panel B), and the interaction terms on the Heavy, αepu

RR and γ
epu
RR , and Arch, γ epu

Rr , parameters for FTSE in Tables 7
and 8. The indirect uncertainty effect is estimated with the positive and significant bonds and commodities
interaction terms, ζ epu

R and ϑ
epu
R . Table 9, summarizes the EPU effects on realized volatility of the ten Euro-

pean indices beyond the aforementioned local (UK) index analysis. We present the uncertainty effect on each
Heavy, Arch and Macro parameter of the model as estimated through alternative restricted forms of the volatil-
ity equation including each EPU effect separately (see also Appendix A.1, Table A3, where we bring together
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the EPU effects on each coefficient of the macro-augmented benchmark equation for the ten European index
volatilities).

All indices in the asymmetric power specification receive considerable direct and indirect uncertainty effects,
which is not the case for Copenhagen’s OMX index in the benchmark specification (Appendix A.1, Table A3).
Interestingly, we observe that for the Norwegian index, the commodities interaction term is insignificant for
either the GSCI or the WTI variable and therefore excluded, while the GSCI alone (without the EPU effect) is
a significant determinant of OSE realized volatility (Table 3). Moreover, the Danish index remains without any
commodity effect in any specification, benchmark or asymmetric power, with or without the EPU multiplier.
Overall, we demonstrate that the European stock market volatilities are consistently exacerbated by economic
policy uncertainty generated in the UK, besides the global commodity and credit market conditions. Our empir-
ical leading-edge results should urge policymakers to consider and closely investigate the side effects for the
whole European financial system of a probable UK turbulence on the way towards Brexit.

All in all, our major contribution to the EPU literature consists of the new empirical evidence we provide on
the positive link between daily EPU and realized volatility and the UK EPU spillovers across Europe.Within the
HEAVY framework, we firstly prove the UK EPU destabilizing impact on European stock markets with finan-
cial volatility investigated on a daily frequency. Secondly, we show that the leverage and heavy effects on realized
variance are state-dependent, not only based on the realized measure structural changes (see Section 4.4), but
they are also considerably magnified under higher prevailing uncertainty conditions. Thirdly and most inter-
estingly from an economic perspective, the increased volatility in credit conditions (or higher cost of debt if the
Moody’s corporate bond yields and spreads are applied) and the rising prices in commodities, both phenom-
ena associated with economic downturns, exacerbate realized volatility to a degree intensified by elevated UK
EPU. Finally, we complement the literature on EPU spillovers (see, for example, Gabauer and Gupta 2018; Balli
et al. 2017; Klößner and Sekkel 2014) by providing evidence of the daily uncertainty spillover effects from the
UK to Europe’s intra-daily stock market volatility. We have proved that policy uncertainty in a specific country
is not confined to the country’s borders but is propagated across the whole continent immediately (only the first
EPU lag is examined in this study).

Table 9. The EPU effect on Heavy, Bonds and Commodities parameters in the m-DAP-HEAVY-R equation.

(1 − βRL)(σ 2
Rt)

δR/2 = ωR + [αRR + α
epu
RR EPUt−1 + (γRR + γ

epu
RR EPUt−1)st−1]L(RMt)

δR/2

+(γRr + γ
epu
Rr EPUt−1)st−1L(r2t )

δr/2 + (ζR + ζ
epu
R EPUt−1)BOt−1 + (ϑR + ϑ

epu
R EPUt−1)COt−1

α
epu
RR γ

epu
RR γ

epu
Rr ζ

epu
R

MOVE
ζ
epu
R
AAA

ζ
epu
R
BAA

ζ
epu
R

BAA−AAA
ϑ
epu
R
GSCI

ϑ
epu
R
WTI

EU 0.03
(0.011)∗∗∗ 0.02

(0.005)∗∗∗ 0.03
(0.003)∗∗∗ 0.01

(0.003)∗∗∗ 0.02
(0.008)∗∗∗ 0.03

(0.008)∗∗∗ 0.02
(0.003)∗∗∗ 0.01

(0.002)∗∗∗

DAX 0.02
(0.009)∗∗ 0.02

(0.004)∗∗∗ 0.03
(0.003)∗∗∗ 0.01

(0.003)∗∗∗ 0.02
(0.007)∗∗∗ 0.03

(0.008)∗∗∗ 0.01
(0.003)∗∗∗ 0.003

(0.002)∗∗

CAC 0.04
(0.008)∗∗∗ 0.01

(0.003)∗∗∗ 0.02
(0.002)∗∗∗ 0.01

(0.003)∗∗∗ 0.03
(0.006)∗∗∗ 0.04

(0.007)∗∗∗ 0.02
(0.002)∗∗∗ 0.01

(0.001)∗∗∗ 0.01
(0.002)∗∗∗

AEX 0.03
(0.008)∗∗∗ 0.01

(0.004)∗∗ 0.03
(0.002)∗∗∗ 0.01

(0.002)∗∗∗ 0.02
(0.006)∗∗∗ 0.03

(0.006)∗∗∗ 0.01
(0.002)∗∗∗ 0.004

(0.001)∗∗∗ 0.01
(0.002)∗∗∗

BELL 0.03
(0.009)∗∗∗ 0.01

(0.004)∗∗ 0.02
(0.002)∗∗∗ 0.01

(0.002)∗∗∗ 0.01
(0.005)∗∗∗ 0.02

(0.004)∗∗∗ 0.01
(0.002)∗∗∗ 0.004

(0.001)∗∗∗ 0.01
(0.002)∗∗∗

IBEX 0.04
(0.011)∗∗∗ 0.01

(0.004)∗∗ 0.02
(0.002)∗∗∗ 0.02

(0.004)∗∗∗ 0.01
(0.007)∗∗ 0.03

(0.008)∗∗∗ 0.01
(0.003)∗∗∗ 0.01

(0.002)∗∗∗ 0.01
(0.003)∗∗∗

SSMI 0.03
(0.009)∗∗∗ 0.01

(0.003)∗∗∗ 0.02
(0.002)∗∗∗ 0.01

(0.002)∗∗∗ 0.02
(0.006)∗∗∗ 0.02

(0.006)∗∗∗ 0.01
(0.002)∗∗∗ 0.003

(0.001)∗∗ 0.003
(0.002)∗∗

OMXC 0.02
(0.012)◦

0.02
(0.003)∗∗∗ 0.01

(0.003)∗∗ 0.02
(0.008)∗∗ 0.03

(0.009)∗∗∗ 0.01
(0.004)∗∗∗

OMXS 0.03
(0.012)∗∗∗ 0.01

(0.004)∗∗∗ 0.02
(0.002)∗∗∗ 0.01

(0.002)∗∗∗ 0.03
(0.009)∗∗∗ 0.03

(0.009)∗∗∗ 0.01
(0.003)∗∗∗ 0.003

(0.002)∗

OSE 0.01
(0.003)∗∗∗ 0.02

(0.002)∗∗∗ 0.004
(0.002)◦

0.02
(0.006)∗∗∗ 0.02

(0.006)∗∗∗ 0.01
(0.002)∗∗∗

Notes: See notes in Table 2. Superscripts indicate the EPU effect on the respective parameter.
°denotes marginal significance at the 0.15 level (αepu

RR for OMXC, ζ epu
R

MOVE
for OSE).
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6. Policy implications

Over the decade following the global turmoil that sharply sparked the interest in the role of uncertainty and the
relevant research increasingly gained momentum following an accelerating pace, the most widespread metrics
documented, or proxies used, have referred tomacroeconomic, financial and policy uncertainty. They all share a
common and highly plausible stylized fact: their guiding significance with a detrimental impact on the health of
the economy and financial markets, which is stage-contingent (dampening economic activity with higher mag-
nitude in shakier times). Therefore, we extend our empirical analysis by focusing more specifically on the first
volatilitymacro-determinant of them-DAP-HEAVY-R equation, that is theUKuncertainty impact on European
indices realized variance. It is generally acknowledged that both financialmarkets and the real economy are at the
mercy of feelings of uncertainty. On the one hand, macroeconomic uncertainty measures concern the macroe-
conomic variables fluctuations and the associated ‘lack of confidence’ about their predictability (Knight 1921;
Bloom 2014), while financial uncertainty pertains to financial indicators setting the tone for the dynamics of
every asset class behavior. On the other hand, economic policy uncertainty, as established by Baker, Bloom,
and Davis (2016), focuses on the uncertainty surrounding policy implementation and future policy changes
by governments, central banks, and other regulatory authorities since they cannot be presumed as certain by
economic agents. Policy risk concerns play a decisive role in every perspective of the economic behavior of all
agents with a highly unpredictable outcome, no matter the postulated degree of regulators’ benevolence (Pas-
tor and Veronesi 2012). Besides the policy environment in agents’ minds, in the advent of the recent crisis, we
also witnessed the apparent and striking ineffectiveness of policies implemented to stabilize the economy in-
crisis and boost post-crisis (monetary- and fiscal-stimulus policies undoubtedly failed to deal with the 2008
financial turmoil). Consequently, we consider policy-generated uncertainty as a broader measure, embracing
both macroeconomic and financial uncertainty, as well as capturing proxies of risk aversion attitudes, economic
sentiment and confidence indicators and even political ingredients of country risk (such as political stability,
polarization or partisan conflict).

Nowadays, regulatory authorities in the UK and the European Union, who design policies to deal with Brexit
and partly contribute to the policy uncertainty generated in the economic agents’ minds, should consider the
shocks they exert in financial markets fluctuations during their lengthy negotiations apart from just dealing
with the Brexit processes. Turning to the policy implications of the proposed macro-augmented high-frequency
volatility model, our findings suggest that policymakers and authorities supervising and regulating the financial
system should take into account reliable volatility forecasts in designing macro- and micro-prudential policy
responses. The risk management of the financial system is structured as follows: (i) identification of risk sources
(both endogenous - financial markets volatility – and exogenous – the macroeconomy), (ii) assessment of the
nature of risk factors, (iii) risk measurement (micro-prudential metrics in the financial institution level and
macro-prudential metrics in the system and markets level), and, (iv) risk mitigation with proactive regulation
and crisis preparedness plans and strategies. Thereupon, regulators should employ themacro-informed financial
volatility forecasts of the m-DAP-HEAVY model across the whole risk management process and the financial
stability oversight tools, such as the early warning systems, the macro stress tests on financial institutions and
the bank capital and risk frameworks.

For example, the macro stress test scenario inputs, which include, among others, stock market volatility pre-
dictions for the financial institutions’ trading books, should consider macro-informed volatility estimates to
account for themacro-effects on financial markets. Economic uncertainty in onemajor country is proved to play
a decisive role across the whole region’s equities. Accordingly, it is essential for the European Banking Authority
(EBA) to add the UK uncertainty factor in the EU-wide stress tests while facing the Brexit fears over the Euro-
pean banking system. Furthermore, complying with the capital and risk frameworks set by supervisors (Basel
committee and central banks), financial institutions measure their trading portfolio’s market risk (beyond the
credit risk of their loan portfolio). They mostly use internal models with the daily Value-at-Risk (VaR) metric
in order to estimate the potential trading losses over a pre-defined holding period for a given confidence level
and define the corresponding capital charges. The most important input in the VaR calculation is the one-day
volatility forecast of the risk factor relevant to the financial instruments under scope. Stock index price volatilities
are widely used in the VaR computation of stock portfolios. Thus, reliable macro-informed volatility forecasts,
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provided by our superior modeling framework, improve the VaR estimates considerably. The potential trad-
ing loss in the lower quantile of the return distribution defined by the VaR number should be large enough to
cover the losses to be realized in the future. The higher number of exceptions in the VaR’s backtesting exer-
cise means higher market risk capital requirements for financial institutions since regulators heavily penalize
a bank’s internal models that fail to cover trading losses (Basel traffic light approach). At the same time, the
VaR-predicted loss should be low (in absolute value) enough in order to prevent supervisors from increasing
the capital charges. Given that the market risk capital requirement is calculated on the trading portfolio total
99% VaR (absolute value, 60-day average) adjusted by the penalty of the backtesting exceptions (higher than 4
in the 250-day sample), supervisors should encourage banks to improve their market risk internal models with
more accurate macro-informed volatility forecasts that better capture the loss distribution without inflating the
capital charges.

Beyond our results’ implications for policymakers, the volatility forecasts produced by the m-DAP-HEAVY
model are directly applicable to a wide range of business finance operations. Alongside the well-established risk
management practice of the trading VaR estimation, portfolio managers should rely on the proposed frame-
work to predict future volatility in asset allocation and minimum-variance portfolio selection complying with
their clients’ risk appetite. Risk averse investors’ mandates specify low volatility boundaries on their portfo-
lio positions, while risk lovers allow for higher volatilities on the risk-return trade-off of their investments.
Accurate volatility predictions can also be used in a forward-looking performance evaluation context, through
the risk-adjusted metrics, i.e. the Sharpe or the Treynor risk-adjusted return ratios. Traders and risk managers
focus on the volatility trajectory in derivatives pricing, volatility targeting strategies and macro-informed trad-
ing decisions. Trading and hedging in financial markets depend on risk factors whose predicted volatilities are
the main input of any pricing function applied. Lastly, financial chiefs consider volatility forecasts when they
decide on investment projects or funding choices (bond and equity valuation defining the cost of capital) given
that expected future cash-flow variation is a critical factor in business analytics.

7. Conclusions

Our study has examined the HEAVYmodel and extended it by taking into consideration leverage, power trans-
formations, and macro-characteristics. For the realized measure our empirical results favor the most general
macro-augmented double asymmetric power specification, where the lags of both powered variables – squared
negative returns, and realized variance - move the dynamics of the power transformed conditional variance of
the latter. Similarly, modeling the returns with a double asymmetric power process, we found that not only the
powered realizedmeasure asymmetry but the power transformed squared negative returns, as well, help to fore-
cast the conditional variance of the latter. The macro-augmentation of the asymmetric power model ensures the
superiority of our contribution, which can be implemented in the areas of asset allocation and portfolio selec-
tion, as well as in several risk management practices. We proved the forecasting dominance of our extensions
over the benchmarkHEAVYmodel through the out-of-sample forecasting across multiple short- and long-term
horizons. Moreover, the detection of structural breaks and the inclusion of break dummies in the asymmetric
power formulation capture the time-varying pattern of the parameters, as the break corresponding to the finan-
cial crisis of 2007/08, in particular, increases the values of the parameters intensifying the destabilizing effect
from asymmetries and macro-factors on stock markets.

Moreover, we demarcate our study fromprevious literature by estimating the significantUKuncertainty effect
on the power of leverage (Heavy and Arch), global credit, and commodity determinants of European markets
realized variance. The UK-generated uncertainty spillovers shed light on new evidence for (i) volatility model-
ing and (ii) the macro-financial linkages literature. Our findings’ novelty is twofold: Given higher (lower) daily
UK uncertainty levels, mostly associated with economic downturns (upturns), (i) heavy and leverage effects
become more (less) acute in realized variance modeling, and (ii) credit and commodity market conditions’
impact on financial volatility increases (decreases). The latter conclusion proves, interestingly, that the posi-
tive effect of tighter credit conditions (proxied either by higher Treasury bonds volatility or higher corporate
yields and spreads) and higher commodity prices (captured either in the commodity benchmark GSCI index
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or the crude oil WTI prices) on European stock market volatility is amplified given higher UK economic policy
uncertainty during a weaker economic stance.

Our empirical findings on the nexus between low-frequency daily squared returns, high-frequency intra-
daily realized measures and daily macro-proxies provide a volatility forecasting framework with important
implications for policymakers and market practitioners, from investors, risk and portfolio managers up to
financial chiefs, leaving ample room for future research on further HEAVY model extensions. Thereupon,
policymakers and market players may use our more general framework to closely track and forecast financial
volatility patterns in the process of devising drastic policies, enforcing the financial system’s regulations to pre-
serve financial stability, deciding on asset allocation, hedging strategies, and investment projects. This UK-led
uncertainty spillover phenomenon, in particular, should be immediately recognized, monitored and mitigated
by regulators amid the Brexit fears and the associated highly probable impairments for Europe’s financial system.
As part of future research, it would be interesting to extend our study to exchange rate market volatility and sev-
eral other asset classes using alternativemacro-proxies for each asset volatility. In this vein, it is crucial to develop
daily EPU indices also for other countries, beyond theUS and theUK.A further interesting line of future research
could be the extension of the multivariate HEAVY formulation of Noureldin, Shephard, and Sheppard (2012)
with leverage, power transformations and macro-effects, starting from the recent study of Dark (2018), who
has applied the Dynamic Conditional Correlations multivariate GARCH models (Engle 2002a) to the multi-
variate HEAVY, or Opschoor et al. (2018) within the Generalized Autoregressive Score (GAS) process of Creal,
Koopman, and Lucas (2013).

Notes

1. This type of asymmetry was introduced by Glosten (1993).
2. The log-transformed series are always positive because all series’ values are higher than one. Since the lower bound of our

macro-regressors’ series is not one but zero, we, alternatively, included the regressors divided by 100 (EPU, MOVE, WTI),
10000 (GSCI) and 10 (AAA, BAA). This resulted in similar estimated coefficients in terms of level and significance within the
HEAVY framework (results available upon request).

3. Further research could consider an exponential HEAVY specification to address the non-negativity limitations.
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Appendix

A.1 Realizedmeasure equation analysis

Table A1. The DAP-HEAVY-R equation. (without macro-factors).

(1 − βRL)(σ 2
Rt)

δR/2 = ωR + (αRR + γRRst−1)L(RMt)
δR/2 + γRrst−1L(r2t )

δr/2

βR αRR γRR γRr δr δR

FTSE 0.77
(0.020)∗∗∗ 0.14

(0.022)∗∗∗ 0.04
(0.014)∗∗∗ 0.08

(0.008)∗∗∗ 1.50 1.30

EU 0.73
(0.023)∗∗∗ 0.18

(0.023)∗∗∗ 0.04
(0.012)∗∗∗ 0.08

(0.007)∗∗∗ 1.50 1.30

DAX 0.72
(0.022)∗∗∗ 0.21

(0.021)∗∗∗ 0.03
(0.010)∗∗∗ 0.07

(0.007)∗∗∗ 1.40 1.40

CAC 0.70
(0.022)∗∗∗ 0.22

(0.020)∗∗∗ 0.03
(0.008)∗∗∗ 0.05

(0.005)∗∗∗ 1.40 1.10

AEX 0.69
(0.023)∗∗∗ 0.23

(0.022)∗∗∗ 0.03
(0.010)∗∗∗ 0.06

(0.006)∗∗∗ 1.40 1.20

BELL 0.66
(0.023)∗∗∗ 0.26

(0.023)∗∗∗ 0.02
(0.009)∗∗ 0.05

(0.006)∗∗∗ 1.40 1.20

IBEX 0.67
(0.026)∗∗∗ 0.27

(0.026)∗∗∗ 0.02
(0.011)∗∗ 0.04

(0.004)∗∗∗ 1.70 1.20

SSMI 0.65
(0.031)∗∗∗ 0.27

(0.030)∗∗∗ 0.03
(0.008)∗∗∗ 0.05

(0.005)∗∗∗ 1.50 1.20

OMXC 0.73
(0.045)∗∗∗ 0.20

(0.033)∗∗∗ 0.04
(0.006)∗∗∗ 1.60 1.00

OMXS 0.69
(0.037)∗∗∗ 0.22

(0.033)∗∗∗ 0.03
(0.010)∗∗∗ 0.04

(0.005)∗∗∗ 1.60 1.00

OSE 0.74
(0.021)∗∗∗ 0.17

(0.016)∗∗∗ 0.03
(0.008)∗∗∗ 0.04

(0.004)∗∗∗ 1.60 1.00

Notes: See Notes in Table 2.

Table A2. The m-DAP-HEAVY-R equation for FTSE with EPU, Bonds & Commodities. (stepwise procedure).

(1) (2) (3) (4) (5) (6) (7) (8) (9)

(1 − βRL)(σ 2
Rt)

δR/2 = ωR + (αRR + γRRst−1)L(RMt)
δR/2 + γRrst−1L(r2t )

δr/2 + φREPUt−1 + ζRBOt−1 + ϑRCOt−1

βR 0.77
(0.020)∗∗∗ 0.76

(0.021)∗∗∗ 0.77
(0.021)∗∗∗ 0.77

(0.021)∗∗∗ 0.77
(0.021)∗∗∗ 0.76

(0.021)∗∗∗ 0.77
(0.022)∗∗∗ 0.77

(0.021)∗∗∗ 0.76
(0.021)∗∗∗

αRR 0.14
(0.021)∗∗∗ 0.13

(0.021)∗∗∗ 0.13
(0.021)∗∗∗ 0.13

(0.022)∗∗∗ 0.13
(0.022)∗∗∗ 0.12

(0.021)∗∗∗ 0.13
(0.022)∗∗∗ 0.13

(0.022)∗∗∗ 0.12
(0.022)∗∗∗

γRR 0.04
(0.014)∗∗∗ 0.04

(0.014)∗∗∗ 0.04
(0.014)∗∗∗ 0.04

(0.014)∗∗∗ 0.04
(0.014)∗∗∗ 0.04

(0.014)∗∗∗ 0.04
(0.014)∗∗∗ 0.04

(0.014)∗∗∗ 0.04
(0.014)∗∗∗

γRr 0.08
(0.008)∗∗∗ 0.09

(0.008)∗∗∗ 0.08
(0.008)∗∗∗ 0.08

(0.008)∗∗∗ 0.09
(0.008)∗∗∗ 0.09

(0.008)∗∗∗ 0.09
(0.008)∗∗∗ 0.09

(0.008)∗∗∗ 0.09
(0.008)∗∗∗

φR 0.01
(0.004)∗∗∗ 0.02

(0.005)∗∗∗ 0.01
(0.005)∗∗∗ 0.02

(0.005)∗∗∗ 0.03
(0.005)∗∗∗ 0.01

(0.004)∗∗ 0.02
(0.005)∗∗∗ 0.02

(0.005)∗∗∗ 0.01
(0.005)∗∗∗

ζR 0.05
(0.011)∗∗∗
MOVE

0.04
(0.014)∗∗∗

AAA

0.07
(0.018)∗∗∗

BAA

0.03
(0.006)∗∗∗
BAA−AAA

0.06
(0.011)∗∗∗
MOVE

0.08
(0.019)∗∗∗

BAA

0.03
(0.006)∗∗∗
BAA−AAA

ϑR 0.01
(0.007)∗
GSCI

0.01
(0.006)∗∗

WTI

0.01
(0.006)∗
WTI

0.01
(0.007)◦
GSCI

δr 1.50
δR 1.30
AIC 2.59901 2.59895 2.59936 2.59926 2.59903 2.59859 2.59829 2.59940 2.59898

Notes: See notes in Table 2. ° denotes marginal significance at the 0.15 level (ϑR in specification (9)).
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Table A3. EPU effect on Heavy, Bonds and Commodities parameters in the Benchmark HEAVY-R equation.

(1 − βRL)σ 2
Rt = ωR + (αRR + α

epu
RR EPUt−1)L(RMt) + (ζR + ζ

epu
R EPUt−1)BOt−1 + (ϑR + ϑ

epu
R EPUt−1)COt−1

α
epu
RR ζ

epu
R

MOVE
ζ
epu
R
AAA

ζ
epu
R
BAA

ζ
epu
R

BAA−AAA
ϑ
epu
R
GSCI

ϑ
epu
R
WTI

EU 0.08
(0.033)∗∗ 0.02

(0.007)∗∗ 0.05
(0.019)∗∗∗ 0.04

(0.009)∗∗∗ 0.004
(0.002)∗∗

DAX 0.01
(0.005)∗

0.02
(0.016)◦

0.03
(0.014)∗∗ 0.02

(0.007)∗∗∗ 0.03
(0.016)∗

CAC 0.09
(0.028)∗∗∗ 0.02

(0.006)∗∗∗ 0.04
(0.016)∗∗∗ 0.06

(0.016)∗∗∗ 0.04
(0.008)∗∗∗ 0.01

(0.003)∗∗∗ 0.02
(0.005)∗∗∗

AEX 0.09
(0.024)∗∗∗ 0.02

(0.004)∗∗∗ 0.04
(0.012)∗∗∗ 0.04

(0.011)∗∗∗ 0.02
(0.006)∗∗∗ 0.01

(0.002)∗∗∗ 0.01
(0.004)∗∗

BELL 0.07
(0.025)∗∗∗ 0.01

(0.003)∗∗∗ 0.02
(0.008)∗∗ 0.03

(0.008)∗∗∗ 0.02
(0.004)∗∗∗ 0.01

(0.002)∗∗∗ 0.01
(0.003)∗∗∗

IBEX 0.09
(0.037)∗∗∗ 0.03

(0.010)∗∗∗ 0.03
(0.020)∗

0.05
(0.022)∗∗ 0.03

(0.011)∗∗∗ 0.01
(0.005)∗∗∗ 0.03

(0.009)∗∗∗

SSMI 0.01
(0.007)∗

0.02
(0.014)◦

0.02
(0.013)∗

0.01
(0.003)∗∗∗

OMXC
OMXS 0.10

(0.066)◦
0.05

(0.020)∗∗ 0.04
(0.018)∗∗

OSE 0.01
(0.006)∗

Notes: See notes in Table 2. Superscripts indicate the EPU effect on the respective parameter. ° denotes
marginal significance at the 0.15 level (ζ epu

R
AAA

for DAX and SSMI, αepu
RR for OMXS).

A.2 Stock index andmacro-variables graphs

Figure A1. FTSE 100 Realized Variance.



THE EUROPEAN JOURNAL OF FINANCE 1179

Figure A2. FTSE 100 Squared Returns.

Figure A3. UK Economic Policy Uncertainty.
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Figure A4. S&P GSCI.

Figure A5. Crude oil WTI.
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Figure A6. Merrill Lynch MOVE 1 Month.

Figure A7. Moody’s AAA corporate bonds yield.
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Figure A8. Moody’s BAA corporate bonds yield.

Figure A9. BAA-AAA corporate bonds spread.
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Figure A10. FTSE 100 Standardized Residuals (Benchmark HEAVY and m-DAP-HEAVY models).
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